U. S. Department of the Interior Bureau of Land Management ## Unalakleet National Wild River, Alaska: Resource Values and Instream Flow Assessment Joe Klein, Mike Scott and Bunny B. G. Sterin # **Cover Photo** Aerial view of the mouth of the Unalakleet River entering Norton Sound. **Authors** Joe Klein completed this project for his graduate research at Colorado State University and was the principal investigator. He is currently a hydrologist with the Alaska Department of Fish and Game, Anchorage, Alaska. Mike Scott is a fisheries biologist with the BLM Anchorage Field Office, Anchorage, Alaska. Bunny B. G. Sterin is a hydrologist with the BLM Alaska State Office, Anchorage, Alaska. The Bureau of Land Management sustains the health, diversity and productivity of the public lands for the use and **Mission Statement** enjoyment of present and future generations. ## Unalakleet National Wild River, Alaska: Resource Values and Instream Flow Assessment by Joe Klein, Mike Scott and Bunny B. G. Sterin U. S. Department of the Interior Bureau of Land Management Alaska State Office 222 W. 7th Avenue, #13 Anchorage, Alaska 99513 May 2000 ### **Table of Contents** | List of Figures | v | |---|-----| | List of Tables | vi | | List of Photographs | vii | | Acknowledgments | ix | | Executive Summary | 1 | | CHAPTER I – INTRODUCTION | 3 | | Study Objectives | 3 | | Description of Study Area | 3 | | Setting | 3 | | Biotic Resources | | | Fisheries Resources | 6 | | Salmon Life History | 6 | | CHAPTER 2 – METHODS | 11 | | Reach Selection | 11 | | Study Site Selection | | | Target Species and Life History Stage | | | Suitability Criteria | | | Embeddedness | | | Critical Reach Site Habitat Suitability Curves | 17 | | Field Methods | | | Hydrology Methods | 19 | | Channel Maintenance Flow | 19 | | PHABSIM Analysis | 19 | | Habitat Simulation | | | Habitat Time Series Modeling Procedures | | | Identification of Instream Flow Recommendations | 20 | | CHAPTER 3 – RESULTS | 21 | |------------------------------|------| | Hydrologic Analysis | 21 | | PHABSIM Results | 21 | | Habitat Time Series Analysis | 24 | | CHAPTER 4 – DISCUSSION | 31 | | CHAPTER 5 – RECOMMENDATIONS | 33 | | LITERATURE CITED | 35 | | APPENDIX A | . A1 | | APPENDIX B | B1 | ## **List of Figures** | Figure 1. | Regional map of the Unalakleet River, Alaska, Unalakleet gaging station and the USGS Kobuk River gaging station near Kiana. | 4 | |------------|---|----| | Figure 2. | Profile of Unalakleet River and location of tributary junctions | 5 | | Figure 3. | Study area for the Unalakleet River instream flow assessment | 12 | | Figure 4. | Location of segments and study sites for the Unalakleet River instream flow assessment | 13 | | Figure 5. | Chinook depth, velocity and substrate spawning habitat suitability curves. | 16 | | Figure 6. | Coho depth, velocity and substrate spawning habitat suitability curves. | 16 | | Figure 7. | Depth, velocity, and substrate habitat suitability curves for the critical passage reach. | 18 | | Figure 8. | Example of transect selected weight. | 20 | | Figure 9. | Log-log linear regression analysis of the Unalakleet River gaging station with the USGS Kobuk River gaging station. | 21 | | Figure 10. | Simulated median monthly discharge summary for Unalakleet River | 24 | | Figure 11. | Chinook salmon spawning habitat (WUA) versus discharge relationship for the Unalakleet River. | 25 | | Figure 12. | Coho salmon spawning habitat (WUA) versus discharge relation-
ship for the Unalakleet River. | 25 | | Figure 13 | June chinook salmon spawning habitat time series from 1976 through 1994 for the Unalakleet River. | 26 | | Figure 14. | July chinook salmon spawning habitat time series from 1976 through 1994 for the Unalakleet River. | 27 | | Figure 15. | August chinook and coho salmon spawning habitat time series from 1976 through 1994 for the Unalakleet River. | 27 | | Figure 16. | September coho salmon spawning habitat time series from 1976 through 1994 for the Unalakleet River. | 28 | | Figure 17. | October coho salmon spawning habitat time series from 1976 through 1994 for the Unalakleet River. | 28 | | Figure 18. | Chinook salmon spawning habitat duration curves from June through August. | . 29 | |------------|---|------| | Figure 19. | Coho salmon spawning habitat duration curves from June through August. | . 29 | ## **List of Tables** | Table 1. | Commercial and susbistence salmon catches by species, Unalakleet Subdistrict | 7 | |----------|---|----| | Table 2. | Salmon species periodicity chart for Unalakleet River | 9 | | Table 3. | Modified Brusven substrate codes | 17 | | Table 4. | Unalakleet – Kobuk daily discharge regression analysis | 22 | | Table 5. | Unalakleet River synthetic monthly discharge (in cfs) data, 1976-1994 | 23 | | Table 6. | May 2-day Log-Pearson III peak flow frequency analysis for the Unalakleet River | 25 | | Table 7. | PHABSIM critical passage reach simulation summary of discharge versus minimum passage width for the Unalakleet River | 26 | | Table 8. | Stream discharge (in cfs) associated with the median spawning habitat values for chinook and coho salmon for the Unalakleet River | 30 | | Table 9. | Monthly discharge (in cfs) recommendation for Unalakleet River above Chiroskey River | 33 | ## **List of Photographs** | Photo 1. | Several species of salmon and other species of fish indigenous to the Unalakleet River | 6 | |----------|--|----| | Photo 2. | Sport fishing opportunities on the Unalakleet River | 7 | | Photo 3. | Coho salmon found on the Unalakleet River | 8 | | Photo 4. | Meandering alluvial channel with well developed gravel bars common on the Unalakleet River | 14 | | Photo 5. | Standard survey techniques used during this instream flow assessment | 18 | | Photo 6. | Fixed point line system used on the Unalakleet River | 19 | #### Acknowledgements Funding and support for this study was provided by the Bureau of Land Management. A special thanks to Dr. John Labadie, graduate advisor to Joe Klein, for his counseling and support throughout the study and graduate program. Thanks to the Student Conservation Association volunteers: Sarah Gibbs, Joe Zendt, and Rob McKenney, whose relentless energy and ambitions were a boost for the project and who endured wet weather and mosquitoes during the entire field season. Special thanks is extended to the Instream Flow Group in Fort Collins, in particular, Jim Henriksen and Ken Bovee for their guidance and assistance during all phases of the project. Thanks to Christoper Estes, Alaska Department of Fish and Game (ADF&G) Statewide Instream Flow Coordinator, for his assistance throughout the project; Terry Hobbs for his assistance with geographic information system (GIS) products used in the analysis and paper; Rich Domingue for sharing his insight and experiences with instream flow analysis; and to Tim Brabets of the U.S. Geological Survey (USGS) for providing the hydrologic data and assistance with the analysis. Special thanks to owed to Brook and Cliff Everest, and Jack Miller for their assistance with logistics and maintaining equipment necessary for a successful field season. #### **Executive Summary** In 1993, the BLM began an instream flow water resources monitoring project on the Unalakleet River. The goal was to identify the amount of water necessary to preserve and protect the natural values of the Unalakleet Wild River and its immediate corridor, and to recommend a legal mechanism through which recommended streamflow regimes can be recognized and protected. The Unalakleet River is located in the northwestern portion of Alaska and drains into Norton Sound. It was designated a National Wild River by Congress on December 2, 1980. The outstandingly remarkable characteristics of the Unalakleet River include fish, wildlife and scenic values (1972, USDI). Four species of salmon inhabit the Unalakleet River: chinook, coho, chum, and pink. Protection of these fisheries requires discharges sufficient to provide certain depths and velocities for various salmon life stages during different times of the year. The life stages and time periods are: • passage: late May through late September • spawning: June through early October • incubation: mid-May through mid-July • rearing: year-round The methodology selected for this study in the "wild" portion of the Unalakleet River was the U.S. Fish and Wildlife Services' Instream Flow Incremental Methodology and associated Physical Habitat Simulation model (PHABSIM). PHABSIM was used to quantify spawning flows for salmon indigenous to the river. PHABSIM models predict depths and velocities at differing flows. These models incorporate habitat suitability curves with a hydraulic model to calculate a weighted usable area. Habitat suitability curves were based on curves from the Susitna Hydro Aquatic Studies and modified by a fisheries biologist familiar with salmon stocks in the Unalakleet River. The results from PHABSIM were incorporated with the simulated flow record to provide a habitat time series analysis for instream flow recommendations. The project team recommends that a State of Alaska Application for Reservation of Water be submitted to the Alaska Department of Natural Resources, Division of Mining, Land and Water, Water Resources Section, specifying the stream flow amounts recommended in this report and summarized as: One hundred percent of the stream flow is recommended during the critical winter months, November through April, to protect salmon
overwintering habitat and incubation. A base flow is recommended during May, with a 48-hour channel maintenance flow to preserve the natural channel development and to flush sediments from spawning substrates. For June, July, and August, flow recommendations are based on the median spawning habitat values for chinook salmon. September and October flow recommendations are based on median spawning habitat values for coho salmon. It is assumed that reserving instream flows associated with the median spawning habitat values will maintain the salmon fishery at historic production levels and protect those values for which the river was designated as "wild." #### **Chapter I - Introduction** The Alaska National Interest Lands Conservation Act of December 2, 1980 (ANILCA, P.L. 96-487), established the upper portion of the Unalakleet River and certain tributaries, as a component of the National Wild and Scenic Rivers System to be administered by the Secretary of the Interior through the Bureau of Land Management (BLM). Approximately 81 miles of the Unalakleet River were designated as "wild" pursuant to the Wild and Scenic Rivers Act (WSRA)(USDI 1983). The WSRA declared it a policy of the United States that "selected rivers of the nation which, with their immediate environments, possess outstandingly remarkable scenic, recreational, geologic, fish and wildlife, historic, cultural, or other similar values, shall be protected in free-flowing condition, and that they and their immediate environments shall be protected for the benefit and enjoyment of present and future generations." In addition, the WSRA states: Designation of any stream or portion thereof as a national wild, scenic, or recreational river area shall not be construed as a reservation of the waters of such streams for purposes other than those specified in this Act, or in quantities greater than necessary to accomplish these purposes. It is the current policy of BLM (BLM Manual Section 7250) to assert water rights for designated wild, scenic, or recreational rivers under BLM management responsibility. Flow determinations, related to the minimum amount of water necessary to fulfill the primary purpose of the reservation, must be made on a case-by- case basis. The above policies and directives provide the impetus for a water rights assessment in the "wild" portion of the Unalakleet River. #### **Study Objectives** The major objectives of the study were to: - 1. Describe existing salmonid spawning habitat conditions of the Unalakleet River. - 2. Determine spawning habitat-flow relationships for each salmon species in the wild portion of the Unalakleet River. - 3. Assess the change in available salmon spawning habitat with time and channel maintenance requirements to determine a flow regime that will protect those values for which the river was designated as "wild." #### **Description of the Study Area** #### Setting The Unalakleet River is located in the northwestern portion of Alaska (Figure 1). The headwaters originate in the Kaltag Mountains, a section of the Nulato Hills, approximately 105 miles inland, and flow in a southwesterly direction into Norton Sound. The designated "wild" portion of the river ranges from its headwaters to the confluence with the Chiroskey River. The village of Unalakleet, with a population of approximately 800, is located at the mouth of the Unalakleet River where it flows into Norton Sound (USDI 1994). The Unalakleet River and its tributaries drain an area of approximately 2,100 square miles. Major tributaries include the North, South, Chiroskey, North Fork Unalakleet, and Old Woman rivers, and Tenmile Creek. The Unalakleet River drops 2,000 feet in elevation over its length (Figure 2). **Figure 1**. Regional map of the Unalakleet River, Alaska, Unalakleet gaging station and the USGS Kobuk River gaging station near Kiana. Figure 2. Profile of Unalakleet River and location of tributary junctions. Channel sinuosity ranges from 1.15 in the headwaters to 2.3 in the lower basin. The basin is within the Continental climatic zone. Winter temperatures average from -5° to -12° F. Average summer temperatures range from 42° to 61° F. Extreme high and low temperatures recorded in the basin are 87° and -52° F, respectively. Prevailing winds are generally easterly (Unalakleet means "place where the east wind blows") averaging 10 mph and during fall storms can reach speeds in excess of 50 mph. Average annual precipitation is 14.2 inches, including 37 inches of snowfall. The Unalakleet River follows the Kaltag fault. The river basin is underlain by sedimentary bedrock consisting of graywacke, shale, sandstone and igneous materials (Cass 1959). #### **Biotic Resources** Four species of salmon and several other species of fish are indigenous to the Unalakleet River (Photo 1). Pink (Oncorhynchus gorbuscha) and chum (O. keta) salmon are the most abundant of the four anadromous species. Coho (O. kisutch) and chinook (O. tshawytscha) salmon, while less abundant, are also significant fish resources and contribute to the local fisheries. Two resident species, Arctic grayling (Thymallus arcticus) and Dolly Varden (Salvelinus malma), are found throughout the drainage. The abundance and quality of these species were major reasons why a portion of the river was included in the Wild River System. Fish resources are important to the basin ecosystem, making significant contributions to the food sup- **Photo 1.** Several species of salmon and other species of fish indigenous to the Unalakleet River. ply of other vertebrate and invertebrates. A large population of black bear (*Ursus americanis*) and brown bear (*U. horribilis*) feed on spawning salmon. Avian species, including loons (*Gavra sp.*), belted kingfishers (*Megaceryle alcyon*), common merganser (*Mergus merganser*), gulls (*Larus sp.*), and several species of raptors, feed on fish species. After spawning, decomposing salmon carcasses provide nutrients to the system. These nutrients directly or indirectly benefit other vertebrates and invertebrates in the stream and estuary. #### Fisheries Resources The fish resources of the Unalakleet River support commercial, subsistence, and sport fisheries. The Unalakleet River supports the largest fishing effort within the Alaska Department of Fish and Game's (ADF&G) Norton Sound Management District. Commercial fishing is a major source of income to local residents of the community of Unalakleet. The commercial fishery usually begins between June 8 and June 20, and ends by September 7. A summary of the commercial salmon catch in the Unalakleet subdistrict is shown in Table 1 (ADF&G 1993). Subsistence is an important and significant use of the fish resources in remote Alaska villages. Although available to Native and non-Native households, Native households are more likely to practice a subsistence lifestyle as an expression of their lives and culture in this area. They are also more likely to prefer food coming from a wider variety of wild resources than non-Native households. Fish often accounts for more than half of a community's total harvest (Georgette and Loon 1993). Sportfishing has become popular on the river (Photo 2) with participants including local residents and non-local fishermen. A major sport fishing lodge and, to a lesser extent, local guides, cater to sport fishermen from around the world. Visiting anglers provide a source of income to the local economy. Anglers fish mostly for chinook and coho salmon, but other species such as Arctic grayling and Dolly Varden are also popular. #### **Salmon Life History** Four species of salmon inhabit the Unalakleet River: chinook, coho, chum, and pink. The following section summarizes their life history. Chinook salmon enter the system in late May. Peak escapement occurs about the last week of June. Chinook tend to mill in the system much longer than other salmon species prior to spawning. Spawning is complete by mid-August (Table 2). Chinook use suitable spawning habitats throughout the study area, but are likely to spawn more extensively in the lower reaches of the study area. Morrow (1980) reports incubation periods from seven to 12 weeks, depending on water temperature. Alevins Table 1. Commercial and subsistence salmon catches by species, Unalakleet Subdistrict.1 | Year ² | Chinook | Coho | Pink | Chum | Total | | |--------------------|---------|--------|---------|---------|---------|--| | 1982 | 4,681 | 68,380 | 162,901 | 49,214 | 285,090 | | | 1983 | 8,890 | 42,986 | 40,006 | 113,621 | 205,549 | | | 1984 | 8,454 | 54,579 | 17,418 | 46,665 | 127,123 | | | 1985 | 14,018 | 17,665 | 56 | 27,079 | 58,842 | | | 1986 | 4,494 | 20,580 | _ | 30,239 | 55,466 | | | 1987 | 3,246 | 15,097 | 97 | 17,525 | 36,106 | | | 1988 | 2,218 | 24,232 | 23,730 | 25,363 | 75,700 | | | 1989 | 4,402 | 36,025 | _ | 20,825 | 61,474 | | | 1990 | 5,998 | 52,015 | _ | 23,659 | 82,230 | | | 1991 | 4,534 | 52,033 | _ | 39,609 | 96,323 | | | 1992 | 3,409 | 84,449 | 6,284 | 52,547 | 146,918 | | | 10-year
Average | 5,511 | 36,075 | 19,288 | 37,939 | 98,935 | | ¹ Alaska Department of Fish and Game 1993. spend an additional two to three weeks in the redd; emergence is believed to occur a few weeks after the yolk sac is absorbed. The freshwater rearing period for Unalakleet River chinook fry and juveniles is two years, while three to four years are spent maturing in the ocean before returning to spawn (Charles Lean personal communication, ADF&G, Nome, Alaska). Coho salmon return to the Unalakleet River much later than other salmon species (Photo 3). Coho initially enter the river in late July and peak escapement typically occurs between August 25 and September 7 (Table 2). Coho salmon have been observed spawning throughout the study area. However, unlike other Pacific salmon, coho have been documented to use the upper portions of drainage basins to spawn (Scott and Crossman 1973). Coho egg development usually takes from six to seven weeks,
but much longer periods have been reported (Morrow 1980). Sac fry spend another two to four weeks **Photo 2.** Sportfishing opportunities on the Unalakleet River. ² 1982-1985 represents combined commercial and subsistence catches; 1986-1992 represents commercial catch. Photo 3. Coho salmon found on the Unalakleet River. in the redd, absorbing their egg sac before emerging as free swimming fry. Emergence occurs between mid-March and mid-May. During their fresh water residence, coho utilize a variety of habitats depending on their age and time of season. Most Unalakleet River fry spend three years in the system before migrating to the ocean, and one year in the ocean before returning to the river as adults (Charles Lean, personal communication, ADF&G, Nome, Alaska). Adult chum salmon enter the system in early June. Peak escapement usually occurs between July 21 and July 31. Spawning continues until early September. Chum salmon have been observed spawning over a wide range of water velocities. Vincent-Lang et al. (1984b) suggests that surface velocities may be less important than the presence of upwelling groundwater. Chum salmon eggs are estimated to hatch from March to mid-May. Fry emergence occurs two to four weeks after hatching. Fry migrate to the estuaries shortly after emerging from their redds. Chum salmon spend three to four years in the ocean before returning to their spawning grounds. Pink salmon are the most abundant of the anadromous salmonids in the Unalakleet River drainage. They return to the system to spawn in late June through late July. Peak escapement occurs about mid-July (Charles Lean personal communication, ADF&G, Nome, Alaska). Spawning occurs throughout the study area. During even years of high abundance, pink salmon have been observed utilizing marginal spawning habitat. Dvinin (1952) observed pink salmon spawning in shallow water depths of 0.32 feet (<0.1 meter) under crowded conditions. As with all salmon, pink salmon egg development and hatching is controlled by temperature. Egg development ranges from eight to 16 weeks, and hatching usually occurs between February and March. After hatching, the sac fry remain in the intergravel spaces of the redd for several more weeks. The sac fry emergence occurs from late March through mid-May. After emerging, pink fry spend about two weeks in the stream before migrating to the estuaries. The life span of the pink salmon is the shortest of the Pacific salmon. They spend 14 to 16 months maturing in the ocean prior to returning to their natal stream to spawn and die. Table 2. Salmon species periodicity chart for Unalakleet River.¹ | Chinook | |----------------------| | Passage ² | | Spawning | Incubation³ Rearing | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | |------|------|------|------|------|------|------|------|------|------|------|------| | | | | | Х | xxxx | XXXX | | | | | | | | | | | | XX | XXXX | XX | | | | | | XXXX | XXXX | XXXX | XXXX | XX | XX | XXXX | XXXX | XXXX | XXXX | XXXX | XXXX | | XXXX Chum Passage Spawning Incubation Rearing | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | |------|------|------|------|-----|-----|------|------|------|------|------|------| | | | | | | XXX | XXXX | Х | | | | | | | | | | | | XXX | XXXX | Х | | | | | XXXX | XXXX | XXXX | xxxx | | | XXX | XXXX | XXXX | xxxx | XXXX | xxxx | | | | | XX | XXX | | | | | | | | Pink Passage Spawning Incubation Rearing | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | |------|------|------|------|------|-----|-----|------|------|------|------|------| | | | | | | Х | XXX | | | | | | | | | | | | | XX | X | | | | | | XXXX | XXXX | XXXX | XXXX | Х | | XX | XXXX | XXXX | xxxx | xxxx | XXXX | | | | | | XXXX | XXX | | | | | | | Coho Passage Spawning Incubation Rearing | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | |------|------|------|------|------|------|------|------|------|------|------|------| | | | | | | | Х | XXX | XXXX | | | | | | | | | | | | Х | XXXX | Х | | | | xxxx | xxxx | xxxx | XXXX | xx | | | х | xxxx | XXXX | xxxx | xxxx | | XXXX $^{^{\}mbox{\tiny 1}}\mbox{Based}$ on professional judgement by ADF&G and BLM fisheries biologist. ²Passage life phase is immigration. ³Incubation life phase is from egg deposition to emergence. #### **Chapter 2 - Methods** The U.S. Fish and Wildlife Service's Instream Flow Incremental Methodology (IFIM) and associated Physical Habitat Simulation Model (PHABSIM) was used as the methodology for the instream flow analysis. The methodology has wide application in the United States and is considered the most scientific and legally defensible method by the U.S. Department of the Interior addressing most instream flow problems (Wesche and Rechard 1980). PHABSIM is designed to quantify potential physical habitat available for each species and life stage of interest. Major components of the design methodology, as modified by the BLM study team, are: - 1) Identification of the study area, study sites, and transect selection. - 2) Identification of target resource(s). - 3) Selection of suitability criteria. - 4) Identification of field methods. - 5) Hydrologic modeling procedures. - 6) PHABSIM calibration and simulation. - 7) Habitat times series modeling procedures. - 8) Identification of flow recommendations. #### **Reach Selection** The geographical extent of the study area was limited to the mainstem of the river included in the "wild" portion of the Unalakleet River (Figure 3). The study area begins at the Chiroskey River and continues up to Tenmile Creek. Based on slope, accretion, and channel characteristics, the study area was divided into four segments. Aerial photos and USGS topographic maps were used to assist in delineation of segment boundaries. Segments were consecutively numbered 1 through 4 (Figure 4). All segments were accessible by boat, except segment 4. The first segment boundary was added upstream from the confluence with the Chiroskey River because the slope and sinuosity change was greater than 25 percent. The second and third segment boundaries were placed at the confluences with the North Fork Unalakleet and Old Woman rivers, respectively, based on accretion of flows greater than 10 percent compared to the mainstem of the Unalakleet River. Segment 1 is characterized as a meandering, alluvial channel with copious gravel bar development (Photo 4). It was 21.5 river miles beginning at the "wild" river boundary near the Chiroskey River confluence (river mile (RM) 25). The average stream gradient is 1.4 feet per mile with a drainage basin of 1,032 square miles. Three study sites were selected in segment 1: sites 1001, 1002, and 1003. The river braids through segment 2. Beginning at RM 46, segment 2 was 8.1 river miles with an average stream gradient of 6.3 feet per mile. Study sites 2001 and 2002 were selected in segment 2. Segment 3 begins at the confluence of the North Fork River (RM 54) and continues to Old Woman River (RM 63) for a total of 8.8 river miles. The stream gradient averages 7.8 feet per mile. It drains an area of 611 square miles. Difficult access and time limitations precluded selecting more than one study site (site 3001) for segment 3. Segment 4 is similar to a headwater stream. Beginning at Old Woman River (RM 63), segment 4 was 13.2 river miles ending at the confluence of Tenmile Creek. The stream gradient averages 14.3 feet per mile and drains an area of 292 square miles. Two study sites were selected in segment 4. Figure 4. Location of segments and study sites for the Unalakleet River instream flow assessment. Three calibration discharges were measured at six of the eight sites. Sites 4001 and 4002 were visited once and, consequently, only one discharge and water surface elevation (WSE) was collected. Temporary staff gages were installed at each study site during discharge measurements to monitor reach specific stage/discharge relationships. If the flow was unsteady during discharge measurements, WSE could be adjusted accordingly. #### **Study Site Selection** Thirty-seven known salmon spawning areas were mapped in segments 1 through 3 during fish studies conducted by BLM in 1990 and 1991. Study sites were randomly selected in segments 1, 2, and 3 from the known spawning areas occurring in each segment. No spawning areas had been previously mapped in segment 4. Study sites in segment 4 were arbitrarily selected after a helicopter reconnaissance of the reach (Figure 4). Three transects were used to describe each study site. The downstream transect was placed at a hydraulic control to accommodate hydraulic modeling constraints imposed by PHABSIM. The other two transects were selected at representative upstream control points to simplify simulation of the stream channel. The head pin location at the downstream transects was recorded using Global Position Satellite system to facilitate relocation of study sites. A critical reach site selection was necessary to evaluate salmon access into the "wild" portion of the river. Reservation of instream flows would be meaningless if the reserved flows did not ensure salmon passage into the "wild" portion of the river. Twenty-five river miles were evaluated, from the mouth of the Unalakleet River to the start of the "wild" boundary at the confluence of Chiroskey River. Four potential critical passage reaches were identified after reconnaissance of the reach and interviews with local residents, but only one reach was selected, due to time and budget constraints. **Photo 4.** Meandering alluvial channel with well developed gravel bars are common on the Unalakleet River. #### **Target Species and Life History Stage** All life history phases of the four species of salmon, Arctic grayling and Dolly Varden were evaluated as target species because of their importance in the designation of the Unalakleet River to the National Wild and Scenic Rivers System, and because of their
social and economic significance to the region. In the final evaluation, the spawning life history stage of chinook and coho salmon were selected for this assessment. Time and money constraints were primary considerations in limiting this assessment to a single life history stage and to the two species. Chinook and coho salmon were chosen because their spawning life history included more of the open water period and they are the preferred salmon species. Arctic grayling and Dolly Varden were not selected because more complete life history studies were unavailable. It was assumed that providing instream flows sufficient for any of the larger salmonid species would provide adequate protection for other species. Local biologists were also more familiar with life histories of the salmon in the drainage. #### **Suitability Criteria** PHABSIM uses habitat suitability criteria (HSC) to formulate suitability-discharge relationships. HSCs are mathematical representations of the response species/life stage or other attributes to stream flow dependent variables (e.g., velocity, depth, substrate, and cover) used by the model. HSCs interpret physical characteristics of the stream into indices of habitat quality. The accuracy and reliability of the output is dependent upon appropriate suitability criteria. An index is scaled between 0 and 1, with 0 denoting no utilization and 1 denoting optimum habitat utilization. The Instream Flow Group has established three categories of curves (Bovee 1986). The categories are based on how the HSCs were developed. Category I curves are based on literature and professional judgement. Category II curves are derived from empirical data but not corrected for environmental bias, while Category III curves have been corrected for environmental bias. The development of Category II and III curves rely on the collection of sufficiently large random samples to adequately represent a range of salmonid spawning habitat conditions. The development of Category II and III curves would have added considerable time and expense to the data collection effort. The HSCs for spawning life stages of chinook and coho salmon were based on HSC developed during the Susitna Hydro Aquatic Studies (Su Hydro) (Vincent- Lang et al. 1984a and 1984b) and modified by fisheries biologists familiar with salmon stocks in the Unalakleet River (Figures 5 and 6). Chinook salmon HSCs were empirically derived in the Su Hydro studies. Coho salmon HSC were based on curves developed for the Terror Lake study and modified by biologists familiar with Susitna River coho salmon stocks (Vincent-Lang et al. 1984a and 1984b). The Susitna River supports spawning populations of all species of salmon found in the Unalakleet River and salmon populations from both rivers exhibit similar life histories. The modified HSC of depth, velocity, and substrate for chinook and coho salmon spawning in the Unalakleet River represent the best estimation of the actual usability of spawning habitat conditions for these species. #### **Embeddedness** The amount of fines in the substrate matrix, or embeddedness, is directly related to salmonid egg development. Embeddedness is a visual assessment of the degree that dominant particles in the stream bed are surrounded or covered by fine-grained sediments (Gordon et al. 1992). The substrate criteria were adjusted to reflect the amount of embeddedness observed. Available literature has shown egg to alevin survival is inversely related to the amount of fine sediment in spawning substrate, but does not agree on magnitude of the relationship. Laboratory and field studies on salmon egg to alevin survival related to embeddedness show a high degree of variability. These effects have been summarized by Cordone and Kelly (1961) and Iwamoto et al. (1978). Consequently, to account for these effects, the modified Brusven index was used to describe substrate particle size along with embeddedness (Table 3) (Bovee 1982). The embeddedness portions of the suitability criteria, although subjective, were derived from predictive **Figure 5.** Chinook depth, velocity and substrate spawning habitat suitability curves. **Figure 6.** Coho depth, velocity and substrate spawning habitat suitability curves. Table 3. Modified Brusven substrate codes. | Code | Substrate
Description | Particle
Size Range
(inches) | |------|--------------------------|------------------------------------| | 1 | Fines (sand & smaller) | < 0.16 | | 2 | Small gravel | .16 - 1 | | 3 | Medium gravel | 1 - 2 | | 4 | Large gravel | 2 - 3 | | 5 | Small cobble | 3 - 6 | | 6 | Medium cobble | 6 - 9 | | 7 | Large cobble | 9 - 12 | | 8 | Small boulder | 12 - 24 | | 9 | Large boulder | > 24 | relationships between fines and salmon embryo survival based on a review of the literature (Platts 1989; Chapman and McLeod 1987; and Tappel 1981). Embeddedness was recorded according to the amount of fines in the substrate matrix (0-24, 25-49, 50-74, 75-99 percent). The original substrate suitability values were reduced by a factor of two-tenths and six-tenths for having fines in the third and fourth quartiles, respectively. For example, if chinook substrate suitability for large gravel (suitability index equal 0.90) was observed to contain between 50 and 74 percent embeddedness (third quartile), the resulting suitability index would be $0.90 \times 0.8 = 0.72$. #### Critical Reach Site Habitat Suitability Curves To evaluate salmon access into the "wild" portion of the river, HSC were adapted for a selected critical reach site. Criteria from the largest salmon species, chinook, were used to determine minimum passage for depth, velocity, and substrate suitabilities. For the depth suitability index, one foot was determined as a conservative minimum; for the velocity, only a minimal flow rate was needed, and, therefore, 0.1 feet per second was selected; the substrate index has no significance in the role of salmon passage at a critical reach in the river and was therefore set to optimal for all values. HSC for the critical reach site is shown in Figure 7. #### **Field Methods** Field data were collected at three calibration flows. WSE and above-water channel cross-sections were surveyed with a Spectra-Physics Lazerplane Survey System using standard survey techniques (Photo 5). Below-water channel cross-sections were determined by subtracting measured depths from the WSE at each flow. Depth and velocity distributions at the three calibration flows were measured using a Marsh-McBirney portable water current meter. For depths accessible by wading, a standard top-setting USGS wading rod was used. For greater depths, a standard USGS fixed point- **Figure 7.** Depth, velocity, and substrate habitat suitability curves for the critical passage reach. fixed line system was used with a 16-foot john boat (Photo 6). A 15 pound sounding weight and current meter for depth and velocity measurements was used at the desired locations along the tagline. A temporary staff gage, installed during each discharge measurement, in- **Photo 5.** Standard discharge measurement techniques were used during this instream flow assessment. dicated steady state flow during all measurements and, therefore, WSE adjustment was unnecessary. Substrate characteristics within a five-foot radius of each vertical were recorded according to a modified Brusven Index (Bovee 1986, Table 3). Substrate was classified using a four-digit code representing the most abundant particle size, the second-most abundant particle size, and the percentage of fines (sand and smaller) in the matrix recorded to the nearest quartile. For example, a code of 52.25 would indicate small cobble was the most abundant particle size, small gravel was the second most abundant and that 25 percent of the cell area was embedded with fines. Visual estimates were made where water depth and clarity allowed. Substrate within two feet upstream and downstream of the transect was evaluated in each cell. A modified gravel scooper was used to sample substrate where visual estimates could not be made. The substrate sampler was fabricated from a six inch diameter metal **Photo 6.** A fixed point line system was used on the Unalakleet River. pipe to which a three-foot metal survey rod was attached. Additional sections of the survey rod were screwed together to sample substrates at deeper depths. #### **Hydrology Methods** Several USGS gaging stations were evaluated for developing a long-term flow record. The Kobuk River gaging station provided the best correlation. The BLM established an experimental discharge gaging station on the Unalakleet River in 1986. A datalogger was installed to record the water pressure that is calibrated to the river staff gage. This gaging station was operated intermittently from 1986 through 1992. Since the summer of 1993, it has operated continuously. Results from the station support establishing the site as favorable for a permanent discharge gaging station. The USGS installed a permanent discharge gaging station in May 1997. Data collected from this station can be used to develop a site-specific hydrologic model when an appropriate period of record has been established. #### **Channel Maintenance Flow** A channel maintenance flow should be reserved during the spring snowmelt (mid-May to mid-June) to preserve natural channel development and to flush sediments from spawning substrates. A literature review suggests that a 48-hour, bankfull discharge is commonly requested for maintenance of stream channels (Rosgen et al. 1986; Gordon et al. 1992). To determine the flow, a two-day Log-Pearson III peak flow frequency analysis was calculated with the simulated May daily flows. #### **PHABSIM Analysis** The data collected during the field inventory were used to calibrate hydraulic models within PHABSIM. The models were then used to predict depths and velocities at flows different from those measured. A complete description of water surface
elevation calibration, velocity calibration, and habitat simulation programs is provided by Milhous et al. (1989). In summary, habitat modeling incorporates the HSC files with the hydraulic model to calculate weighted usable area (WUA). That is, the relationships for depth, velocity, and substrate are combined for a composite suitability index (CSI) and compared with the estimated depth, velocity, and substrate characteristics estimated by the physical model for each cell within the study reach for predetermined flows. The CSI corresponds to the particular suitability level of the three projected habitat components (depth, velocity, and substrate) in a cell value and are used to "weight" each cell as a percentage of surface area that is suitable as spawning habitat (Estes 1984). The procedure is repeated for a range of discharges to obtain spawning habitat values as a function of discharge. Results are normally presented in the form of a curve showing the relationship between available habitat area and stream discharge, and for a target species or a flow dependent attribute. The three transects at each study site were weighted according to the amount of spawning habitat represented. Transects for each study site were weighted as follows (Figure 8): Transect one (downstream) – represented 25% Transect two (middle) – represented 50% Transect three (upstream) – represented 25% #### **Habitat Simulation** Three CSI functions are available in PHABSIM to simulate a relationship between stream flow and usable spawning habitat, specifically multiplication, geometric mean, and minimum. From a preliminary evaluation of the data, the geometric mean function was selected as the habitat simulation weighting function. The geometric mean function assumes input on the composite weighting factor to be based on all three suitability factors. This technique implies compensation effects: if two of the three variables are in the optimum range, the value of the third variable has less effect unless it is zero. This option provides a more conservative approach than either the multiplication or minimum option. This was important since HSC, by their dimensionless and relative-value nature, provide only an index of the target species response to the habitat variables (depth, velocity, and substrate) affecting the selection of spawning areas. In addition, a conservative approach was important to the planning team for the protection of the instream resources in the wild portion of the river. Study sites in each segment were equally weighted and multiplied by the number of segment river miles in order to calculate the total spawning habitat in each river segment. The summation of all four segments provides total spawning habitat by target species for the study area. #### **Habitat Time Series Modeling Procedures** Habitat-discharge relationships developed from PHABSIM were used to produce spawning habitat time Figure 8. Example of transect selected weight series (HTS) for the months chinook and coho salmon are spawning. Total spawning habitat-discharge relationships by target species were calculated and combined with the simulated median monthly flow model for the Unalakleet River. A spawning habitat duration curve was constructed from the HTS for each month in which chinook and coho salmon are spawning. Flows associated with the median spawning habitat value were then identified. #### **Identification of Instream Flow Recommendations** The monthly median spawning habitat value for chinook and coho salmon, and hydrologic analysis for channel maintenance flow were evaluated to determine the appropriate quantity of instream flow to protect those values for which the river was designated as "wild." #### **Chapter 3 - Results** Chinook and coho salmon spawning habitat results were evaluated for flows which provide usable spawning habitat from June through October and channel maintenance flow during spring snowmelt (mid-May to mid-June). #### **Hydrologic Analysis** The USGS Kobuk River gaging station near Kiana, 200 miles north of the Unalakleet gage, was used to correlate the Unalakleet gage. The Kobuk River drainage area is 9,520 square miles with a period of record from 1976 to present. A log-log linear regression analysis was used to correlate the Kobuk gaging station flows with observed Unalakleet River flows. Discharge measurements collected by USGS (1982 and 1983) and BLM (1986, 1991, 1993, and 1994) were used from the Unalakleet gaging station for the regression analysis (Figure 9). Unalakleet River mean daily flows showed a strong correlation (r² = 0.93, p-value < .01) with mean daily flows from the Kobuk station (Table 4). Long-term daily discharge estimates of the maximum, minimum, and median monthly flows for the Unalakleet River are shown in Table 5. In May, the estimated daily flows ranged from 88 to 3,300 cfs. June estimated daily flows ranged from 1,500 to 6,000 cfs; July estimated daily flows from 700 to 2,600 cfs; August estimated daily flows from 560 to 5,400 cfs; September estimated daily flows from 640 to 5,400 cfs; and October estimated daily flows ranged from 360 to 1,900 cfs. The estimated median monthly flows were 1,400; 2,900; 1,400; 1,700; 1,500; and 870 cfs for May, June, July, August, September, and October, respectively. A channel maintenance flow analysis was evaluated during the spring snowmelt (mid-May to early-June). **Figure 9.** Log-log linear regression analysis of the Unalakleet River gaging station with the USGS Kobuk River gaging station. The simulated flow record indicates a base flow of approximately 100 cfs (Figure 10, Table 5). Evaluation of the 48-hour (two-day) Log-Pearson III peak flow frequency analysis on the simulated flow record predicts a channel maintenance flow of approximately 5,000 cfs based on the two-year recurrence interval (Table 6). #### **PHABSIM Results** PHABSIM was used to quantify the amount of usable spawning habitat for chinook and coho salmon. The Unalakleet River IFIM data decks were initially processed using the TREVI4 program. This program looks for errors in data placement, and produces a hard copy of pertinent information needed to run the model, including transect weighting factors, slopes, stage of zero flow, WSE, etc. A summary of the data decks for each study site is shown in Appendix A (Tables A-1 through A-8). One goal of the hydraulic simulation is to have the model simulation accurately reflect measured velocities and depths at the calibration flows. A range of flows was selected for each river segment over which the model Table 4. Unalakleet – Kobuk daily discharge regression analysis. | | | UNALA | KLEET | KOE | BUK | | | | |------------|----------------|----------|--------|--------|----------|-----------|--------|--| | | | (1,032 | SQ Mi) | (9520 |) SQ Mi) | PREDICTED | | | | YEAR | DATE | Q(cfs) | LOG(Q) | Q(cfs) | LOG(Q) | LOG(Q) | Q(cfs) | | | 1982 | 27-AUG | 1,990 | 3.299 | 24,700 | 4.393 | 3.195 | 1,570 | | | 1983 | 25-MAR | 84 | 1.924 | 2,000 | 3.301 | 2.037 | 109 | | | 1986 | 10-JUL | 822 | 2.915 | 13,000 | 4.114 | 2.900 | 794 | | | 1991 | 12-JUN | 4,560 | 3.659 | 63,800 | 4.805 | 3.633 | 4,290 | | | 1993 | 31-AUG | 1,700 | 3.230 | 20,000 | 4.301 | 3.098 | 1,250 | | | 1994 | 17-JUN | 2,440 | 3.388 | 59,300 | 4.773 | 3.599 | 3,970 | | | 1994 | 20-JUN | 1,980 | 3.297 | 47,500 | 4.677 | 3.497 | 3,140 | | | 1994 | 24-JUN | 2,820 | 3.449 | 34,600 | 4.539 | 3.351 | 2,240 | | | 1994 | 30-JUN | 2,270 | 3.356 | 26,700 | 4.427 | 3.231 | 1,700 | | | 1994 | 6-JUN | 1,750 | 3.243 | 26,000 | 4.415 | 3.219 | 1,660 | | | Regress | ion Statistics | | | | | | | | | Multiple F | 3 | 0.962263 | | | | | | | | R Square | ; | 0.92595 | | | | | | | | Adjusted | R Square | 0.916694 | | | | | | | | Standard | Error | 0.137989 | | | | | | | | Observat | ions | 10 | | | | | | | would predict available spawning habitat. A range of 1,000 to 5,000 cfs was chosen for segment 1. For segments 2, 3, and 4, a range of 1,000 to 3,500 cfs, 500 to 2,500 cfs, and 300 to 900 cfs flows were chosen, respectively. The water surface program (WSP) provides the best WSE calibration results and was used to calibrate segments 1, 2, and 3. MANSQ and WSP were used for calibrating WSEs in segment 4 because the two upper sites contained only one calibration flow. Three measured velocity sets were collected at each study site except sites, 4001 and 4002. All three sets were evaluated for velocity calibration. The high flow velocity set provided the best calibration and was used for the range of flow simulations. Velocity adjustment factors (VAF) provide a measure of how well the model simulates velocities. VAFs are computed by dividing the simulated discharge into the calculated discharge. A VAF between 0.90 and 1.10 is considered good; between 0.85 and 1.15 is fair; between 0.80 and 1.20 is marginal; and below 0.80 or above 1.20 is considered poor. Appendix B summarizes the VAF transects. For the two headwater transects (sites 4001 and 4002), only one discharge was measured for each site and larger VAFs were observed. Ideally, three measured discharges are collected over the range for model simulations. Usable spawning habitat versus stream flow relationships were simulated for chinook and coho salmon using the geometric mean weighting option (Figures 11 and 12). PHABSIM predicts a parabolic relationship for chinook and coho salmon. Available spawning habitat increases with flow until it peaks at 2,510 and 1,480 Table 5. Unalakleet River synthetic monthly discharge (in cfs) data, 1976-1994 (rounded to 2 significant digits). | Z | 220 | 97 | 89 | 110 | 120 | 92 | 69 | 110 | 52 | 77 | 74 | 120 | 98 | 98 | 120 | 120 | 75 | 86 | 130 | | | | |--------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|-------|-------| | Σ | 22 | CO | ω | = | 12 | O) | 9 | = | 4) | | | 12 | ω | ω | 12 | 12 | 1
| (U | 13 | | | | | MAX | 710 | 2,400 | 2,000 | 4,400 | 4,300 | 3,000 | 2,900 | 2,400 | 3,600 | 4,400 | 5,400 | 1,900 | 2,900 | 000'9 | 2,200 | 3,700 | 4,000 | 4,600 | 5,400 | | | | | MEDIAN | | 380 | 530 | 540 | 290 | 260 | 780 | 380 | 300 | 450 | 280 | 400 | 260 | 480 | 450 | 490 | 250 | 1,100 | | 450 | | | | Dec | 220 | 120 | 230 | 160 | 120 | 110 | 240 | 140 | 120 | 270 | 220 | 130 | 220 | 260 | 210 | 190 | 200 | 360 | | 210 | 360 | 110 | | Nov | 320 | 200 | 300 | 220 | 150 | 150 | 410 | 230 | 170 | 480 | 340 | 230 | 370 | 470 | 350 | 340 | 300 | 029 | | 310 | 029 | 150 | | Oct | 540 | 930 | 760 | 860 | 360 | 370 | 1,100 | 540 | 510 | 1,600 | 066 | 099 | 1,100 | 1,400 | 890 | 910 | 260 | 1,900 | | 870 | 1,900 | 360 | | Sep | 710 | 1,300 | 1,500 | 1,700 | 950 | 1,100 | 3,100 | 1,500 | 1,100 | 3,800 | 5,400 | 1,200 | 1,200 | 3,000 | 2,200 | 640 | 1,000 | 3,100 | 2,800 | 1,500 | 5,400 | 640 | | Aug | | 260 | 086 | 2,600 | 1,100 | 3,000 | 1,900 | 2,400 | 3,600 | 710 | 1,700 | 1,600 | 2,100 | 3,800 | 260 | 1,000 | 1,500 | 1,700 | 5,400 | 1,700 | 5,400 | 260 | | lul | | 200 | 1,500 | 2,100 | 2,600 | 2,200 | 1,600 | 830 | 1,200 | 1,400 | 830 | 1,100 | 750 | 2,380 | 820 | 1,480 | 1,000 | 1,400 | 2,400 | 1,400 | 2,600 | 200 | | Jun | | 2,400 | 2,000 | 4,400 | 4,300 | 1,700 | 2,900 | 2,100 | 2,300 | 4,400 | 2,500 | 1,900 | 2,100 | 000'9 | 1,500 | 3,700 | 4,000 | 4,600 | 3,200 | 2,900 | 6,000 | 1,500 | | Мау | | 950 | 1,600 | 3,200 | 3,100 | 1,700 | 1,200 | 1,100 | 430 | 420 | 150 | 260 | 2,900 | 490 | 2,200 | 3,300 | 88 | 3,000 | 2,300 | 1,400 | 3,300 | 88 | | Apr | | 97 | 88 | 110 | 210 | 92 | 69 | 160 | 52 | 77 | 74 | 120 | 66 | 98 | 120 | 120 | 75 | 86 | 130 | 100 | 210 | 52 | | Mar | | 110 | 92 | 110 | 140 | 92 | 75 | 110 | 29 | 83 | 96 | 130 | 98 | 92 | 130 | 130 | 80 | 110 | 130 | 100 | 140 | 29 | | Feb | | 110 | 100 | 140 | 150 | 26 | 78 | 130 | 71 | 94 | 130 | 140 | 06 | 86 | 150 | 150 | 91 | 120 | 160 | 120 | 160 | 71 | | Jan | | 140 | 110 | 190 | 160 | 110 | 98 | 170 | 97 | 100 | 180 | 170 | 100 | 150 | 190 | 170 | 120 | 150 | 230 | 150 | 230 | 98 | | | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | MEDIAN | MAX | Z | cfs for chinook and coho salmon, respectively, and then predicts a continual decrease. PHABSIM modeling results for the critical passage reach indicate that a discharge of 500 cfs provides a stream channel width of 204 feet with one foot of depth (Table 7). #### **Habitat Time Series Analysis** PHABSIM results were incorporated into the simulated flow record to develop a HTS model. The HTS analysis for June, July, August, September, and October are shown in Figures 13 through 17, respectively. The HTS analysis shows a positive relationship between available spawning habitat and the median monthly flow. Available spawning habitat decreases with extreme flows, and peaks as flows approach the median monthly flows for each month. Monthly spawning habitat duration curves were constructed from the HTS data (Figures 18 to 19). The median spawning habitat values were determined from these curves and are summarized in Table 8. Figure 10. Simulated median monthly discharge summary for Unalakleet River. **Figure 11.** Chinook salmon spawning habitat (WUA) versus discharge relationship for the Unalakleet River. **Figure 12.** Coho salmon spawning habitat (WUA) versus discharge relationship for the Unalakleet River. **Table 6.** May 2-day Log-Pearson III peak flow frequency analysis for the Unalakleet River. | RECURRENCE | FLOOD | |------------|----------| | INTERVAL | ESTIMATE | | (Year) | (cfs) | | 2 | 5,000 | | 5 | 7,900 | | 10 | 8,800 | | 25 | 9,300 | | 50 | 9,500 | | 100 | 9,600 | | | | **Table 7.** PHABSIM critical passage reach simulation summary of discharge versus minimum passage width for the Unalakleet River. | Discharge (cfs) | WSL
(feet) | Mean
Vel | Surface
Area | Usable
Area | Weighted
Area | C/S
Volume | Percent
Usable | Percent
WUA | |-----------------|---------------|-------------|-----------------|----------------|------------------|---------------|-------------------|----------------| | | | (ft/sec) | (ft²) | (ft²) | (ft²) | | (%) | (%) | | 500 | 96.08 | 1.04 | 272 | 204 | 204 | 482 | 75.12 | 75.12 | | 1,000 | 96.62 | 1.55 | 323 | 224 | 224 | 644 | 69.35 | 69.35 | | 2,000 | 97.23 | 2.33 | 387 | 295 | 295 | 859 | 76.33 | 76.33 | | 2,890 | 97.59 | 2.85 | 443 | 311 | 311 | 1,013 | 70.20 | 70.20 | | 4,000 | 97.93 | 3.44 | 444 | 356 | 356 | 1,163 | 80.20 | 80.20 | | 5,000 | 98.17 | 3.94 | 444 | 376 | 376 | 1,270 | 84.59 | 84.59 | **Figure 13.** June chinook salmon spawning habitat time series from 1976 through 1994 for the Unalakleet River. **Figure 14.** July chinook salmon spawning habitat time series from 1976 through 1994 for the Unalakleet River. **Figure 15.** August chinook and coho salmon spawning habitat time series from 1976 through 1994 for the Unalakleet River. **Figure 16.** September coho salmon spawning habitat time series from 1976 through 1994 for the Unalakleet River. **Figure 17** October coho salmon spawning habitat time series from 1976 through 1994 for the Unalakleet River. **Figure 18.** Chinook salmon spawning habitat duration curves from June through August. **Figure 19.** Coho salmon spawning habitat duration curves from June through August. **Table 8.** Stream discharge (in cfs) associated with the median spawning habitat values for chinook and coho salmon for the Unalakleet River. | Chinook 1,620 1,450 1,540 Coho 980 1,010 890 | | June | July | August | September | October | |--|---------|-------|-------|--------|-----------|---------| | Coho 980 1,010 890 | Chinook | 1,620 | 1,450 | 1,540 | | | | | Coho | | | 980 | 1,010 | 890 | ## **Chapter 4 - Discussion** The mean daily discharge for the Unalakleet River gaging station correlated strongly with the mean daily flows from the USGS Kobuk gaging station to provide a 17-year simulation flow record. This was expected since both rivers had similar geomorphic characteristics and were in the same hydrologic basin influenced by similar weather patterns. Field sampling for the instream flow study was conducted during the 1994 summer season, one of the wettest on record. The high flows were helpful in collecting a high flow calibration measurement for all the study sites except upper study sites 7 and 8. The higher-thannormal measured flow conditions combined with the inherent assumptions of the PHABSIM limited our ability to simulate lower flow conditions. Study sites 7 and 8 were sampled only once at a flow below the median monthly flow. Only one calibration flow was measured at these sites. The range of simulation flow predictions were narrower than sites measured for three calibration flows. Winter is a critical period for arctic aquatic resources. Low flows and freezing can limit habitat which can significantly affect incubation and rearing life history stages of salmon. Salmonid eggs, if kept moist, can withstand extended periods of dewatering without experiencing significant mortalities (Becker et al. 1982, and Reiser and White 1983). However, the length of time that an embryo or alevin can withstand dewatering decreases dramatically with each subsequent stage of development (Becker et al.1983). Typically, the Unalakleet River is frozen over from late October through early May. Instantaneous March flow measurements correspond with the simulated hydrograph developed from the Kobuck River gage. The data suggest a base flow of approximately 100 cfs. Overwintering areas in rivers generally occur in specific areas, although specific pools or channels where fish spend the winter may vary from one year to the next (Wilson et al. 1977). Studies by Yoshihara (1972), Craig and McCart (1974), Furniss (1975), Kogl and Schell (1975), and Craig (1976) document the importance of winter fish habitat in arctic rivers. Wilson et al. (1977) concludes that winter withdrawal from any arctic freshwater habitat poses a potential, and often significant threat to aquatic organisms and may affect subsistence, sport and commercial fisheries. Information related to the importance of winter flows to arctic aquatic life was the basis for November to April flow recommendation. June through October flow recommendations are based on the analysis of the spawning phases of chinook and coho salmon. Potential habitat availability is different among species and life phases. The flows that support optimal habitat availability for any one species and one life phase may be less favorable to another life phase of the same species or other species. The analysis of two species and one life phase to determine recommended flows during May through October may not provide optimal habitat for other species and their life phases. However, under any given natural flow regime, flows will not be optimal for any given species for their entire life phase. The recommended flows mimic the simulated hydrograph developed for the Unalakleet River and provide quality spawning habitat for the target species. These recommended flows should also provide adequate habitat for those species endemic to the drainage and their life phases. ## **Chapter 5 - Recommendations** - 1. Submit a State of Alaska "Application for Reservation of Water" to the Alaska Department of Natural Resources, Division of Mining, Land and Water, Water Resources section with the monthly discharge recommendation listed in Table 9 to preserve and protect the natural values of the Unalakleet Wild River and its immediate corridor. - 2. Develop a site-specific hydrologic model from the newly installed USGS discharge gaging station when an appropriate period of record has been established. - 3. Develop chinook and coho salmon HSCs specific to the Unalakleet River, or collect the necessary data to test the transferability of the
curves developed for the Susitna hydro study. Either of these efforts would prove better resolution of the instream flows required to protect the salmon spawning habitat. - 4. Identify future requirements needed to protect this recommendation. Evidentiary standards need to meet the State of Alaska's mandatory 10-year review of instream flow reservations. These requirements may be defined at the time of adjudication. Table 9. Monthly discharge (in cfs) recommendation for Unalakleet River above Chiroskey River. | Nov - April | May | June | July | August | September | October | |--------------|------|-------|-------|--------|-----------|---------| | 100% of Flow | 100ª | 1,620 | 1,450 | 1,540 | 1,010 | 890 | ^awith a 48-hour channel maintenance flow of 5,000 cfs in the event an impoundment is built in the watershed and would alter the flow regime in the study area. ## **Literature Cited** Alaska Department of Fish and Game. 1993. Norton Sound Port Clarence-Kotzebue Sound Annual Management Report. Division of Commercial Fisheries AYK Regional Information Report 3A93-15. Anchorage, AK. Becker, C.D., D.A. Neitzel and D.H. Fickeisen. 1982. Effects of dewatering on chinook salmon redds: tolerance of four developmental phases to daily dewaterings. Trans. Amer. Fish. Soc. 111:624-637. Becker, C.D., D.A. Neitzel and C.S. Abernethy. 1983. Effects of dewatering on chinook salmon redds: tolerance of four developmental phases to one-time dewatering. North American Journal of Fisheries Management. 3(4): 373-382. Bovee, K.D. 1982. A Guide to stream habitat analysis using the instream flow incremental methodology. U.S.F.W.S. Instream Flow Information Paper No. 12. U.S.F.W.S. FWS/OBS-82/86. Bovee, K.D. 1986. Development and evaluation of habitat suitability criteria for use in the instream flow incremental methodology. Instream Flow Information Paper No. 21. U.S.F.W.S. National Ecology Center, Biological Report 86(7). Cass, J.T. 1959. Reconnaissance geologic map of the Norton Bay quadrangle, Alaska, U.S. Geological Survey Miscellaneous Geologic Investigations Map I-286. Chapman, D.W. and K.P. McLeod. 1987. Development of criteria for fine sediment in the Northern Rockies ecoregion. Final Report. U.S. Environmental Protection Agency, EPA 910/87-162, Seattle, Washington. Cordone, A.J. and D.W. Kelly. 1961. The influence of inorganic sediment on the aquatic life of streams. California Fish and Game 47(2): 189-228. Craig, P.C. 1976. Ecological studies of anadromous and resident populations of arctic char in the Canning River drainage and adjacent coastal waters of the Beaufort Sea, Alaska. Preliminary draft. Report for Alaskan Arctic Gas Study Co. Aquatic Environments, Ltd. Craig, P.C. and P.J. McCart. 1974. Fall spawning and overwintering areas of fish populations along routes of proposed pipeline between Prudhoe Bay and the McKenzie Delta, 1972-1973. *In* Fisheries Research Associated with Proposed Gas Pipeline Routes in Alaska, Yukon, and Northwest Territories. Canadian Arctic Gas Study Ltd./Alaskan Arctic Gas Study Co. Biological Report Series 15(3):1-33. Dvinin, P.A. 1952. The Salmon on South Sakhalin. Inz. TINRO. 37:69-108. Estes, C.C. 1984. Evaluation of methods for recommending instream flows to support spawning by salmon. M.S. Thesis, Washington State University, Pullman, Washington. Furniss, R.A. 1975. Inventory and cataloging of Arctic area waters. In Annual Report of Progress, 1974-1975. Federal Aid in Fish Restoration. Sport Fish Investiga- tions of Alaska. Alaska Department of Fish and Game. Project F-9-7, Job G-1-1. Georgette, S. and H. Loon. 1993. Subsistence use of fish and wildlife in Kotzebue, A Northwest Alaska Regional Center. Division of Subsistence, Alaska Department of Fish and Game, Juneau, Technical paper No. 167. Gordon, N.D., T.A. McMahon, and B.L. Finlayson. 1992. Stream hydrology: an introduction to ecologist. John Wiley & Sons, Chichester, England. 526 pp. Iwamoto, R.N., E.O. Salo, M.A. Madej, and R.L. McComas. 1978. Sediment and water quality: a review of the literature including a suggested approach for water quality criteria. U.S. Environmental Protection Agency, EPA 910/9-78-048, Seattle, Washington. Kogl, D.R. and Schell. 1975. Colville River delta fisheries research in Environmental Studies of an Arctic Estuarine System — Final Report. V. Alexander et al. Institute of Marine Science, University of Alaska, Fairbanks. Report 74-1. Milhous, R.T., M.A. Updike, and D.M. Schneider. 1989. Physical habitat simulation system reference manual - version II. Instream Flow Information Paper No. 26. U.S. Fish Wild. Serv. Biol. Rep. 89(16). v.p. Morrow, J.E. 1980. Freshwater fishes of Alaska. Alaska Northwest Publishing Co., Anchorage, AK. 248 pp. Platts, W.S. 1989. Salmonid egg to alevin survival. Monitoring BMPs and nonpoint source pollution advanced riparian course administered by Don Chapman Consultants. Boise, Id. pp. 48. Rosgen, D.L., H.L. Silvey, and J.P. Potyondy. 1986. The use of channel maintenance flow concepts in the Forest Service. Hydrological Science and Technology: Short papers. American Institute of Hydrology (2):19-26. Reiser, D.W. and R.G. White. 1983. Effects of complete dewatering on salmonid egg-hatching success and development of Juveniles. Trans. Amer. Fish. Soc. 112:532-540. Scott, W.B. and E.J. Crossman. 1973. Freshwater fishes of Canada. Fish. Res. Board Can. Bull. 184. Ottawa, Canada. Tappel, P.D. 1981. A new method of relating spawning gravel size composition to salmonid embryo survival. Master's Thesis, University of Idaho, Moscow, Idaho. USA. pp. 51. USDI, Bureau of Land Management. 1983. Unalakleet River, A Component of the National Wild and Scenic River System, Anchorage District, Anchorage, AK, 34 pp. USDI, Bureau of Land Management. 1994. Quantification of instream flow water rights and ancillary aquatic investigation in the Unalakleet National Wild River: Fisheries study plan. Division of Resource, Anchorage, AK. 14 pp. USDI, Bureau of Outdoor Recreation. 1972. Prepared by Alaska Planning Group, Washington, D.C. Report to the Secretary of the Interior of potential components of the National Wild and Scenic Rivers System, Alaska. 112 pp. Vincent-Lang, D., A. Hoffman, A. Bingham, and C. Estes. 1984a. Habitat suitability criteria for chinook, coho, and pink salmon spawning in tributaries of the Middle Susitna River. Chapter 9 *in* C. C. Estes, and D. S. Vincent-Lang, eds. Aquatic habitat and instream flow investigations (May-October 1983). Alaska Department of Fish and Game Susitna Hydro Aquatic Studies Report No. 3, Anchorage, Alaska. Vincent-Lang, D., A. Hoffman, A. Bingham, and C. Estes. 1984b. An Evaluation of chum and sockeye salmon spawning habitat in sloughs and side channels of the Middle Susitna River. Chapter 7 *in* C. C. Estes, and D. S. Vincent-Lang, eds. Aquatic habitat and instream flow investigations (May-October 1983). Alaska Department of Fish and Game Susitna Hydro Aquatic Studies Report No. 3, Anchorage, Alaska. Wesche, T.A. and P.A. Rechard. 1980. A summary of instream flow methods for fisheries and related research needs. Eisenhauer Consortium. Bulletin 9. WRRI. University of Wyoming, Laramie, Wyoming. Wilson, J. W., E. H. Buck, G. F. Player, and L. D. Dreyer. 1977. Winter water availability and use conflicts as related to fish and wildlife in Arctic Alaska—A synthesis of Information. A.E.I.D.C. Anchorage, Alaska. FWS/OBS-77/06. Yosshihara, H.T. 1972. Monitoring and evaluation of Arctic waters with emphasis on North Slope drainage. *In* Annual Report of Progress, 1971-1972. Federal Aid in Fish Restoration. Sport Fish Investigations of Alaska. Alaska Department of Fish and Game. Project F-9-5, Job G-III-A. UNALAKLEET RIVER SITE 1001 ``` 100 0000100100001001000000 NSLP -0.3 QARD 1000 OARD 1100 QARD 1200 QARD 1300 QARD 1400 QARD 1500 QARD 1600 QARD 1700 QARD 1800 QARD 1900 QARD 2000 OARD 2100 QARD 2200 QARD 2300 QARD 2400 QARD 2500 OARD 3000 QARD 3500 4000 OARD QARD 5000 0.0 0.0 .50 90.70 .00034 XSEC 0.0 0.0 99.2 6.6 95.8 17.3 94.5 27.3 93.8 37.3 93.4 47.3 92.9 0.0 57.3 92.6 67.3 92.5 77.3 92.3 87.3 92.0 97.3 91.7102.3 91.6 0.0107.3 91.6112.3 91.5117.3 91.6122.3 91.7127.3 91.5132.3 91.5 0.0137.3 91.5142.3 91.4147.3 91.5152.3 91.5157.3 91.4162.3 91.4 0.0167.3 91.2172.3 91.2177.3 91.1182.3 91.1187.3 90.9192.3 90.9 0.0197.3 90.7202.3 90.7207.3 91.0212.3 91.3217.3 91.3222.3 91.2 0.0227.3 91.7236.6 95.8245.2102.0 0.0 3.40 3.50 3.20 3.20 3.10 3.20 2.90 3.10 2.90 2.90 2.80 2.70 VEL1 VEL1 0.0 2.80 2.70 2.30 2.60 2.50 2.40 2.30 2.20 2.20 2.00 1.80 1.50 VEL1 0.0 1.20 0.0 95.64 2200.00 CAL2 VEL2 0.0 VEL2 0.0 VEL2 0.0 VEL2 0.0 CAL3 0.0 95.24 1720.00 VEL3 0.0 VEL3 0.0 VEL3 0.0 0.0 VEL3 XSEC 276.0 276.0 .50 90.70 .00034 276.0 0.0102.1 3.5 95.9 10.8 92.6 15.8 91.0 20.8 90.2 27.8 89.3 276.0 34.8 88.7 39.8 88.6 44.8 88.5 49.8 88.7 56.8 88.8 63.8 89.1 ``` Table A-1. MASTER DATASET ``` Table A-1. (cont'd) ``` ``` 276.0 70.8 89.3 77.8 89.5 87.8 90.0 97.8 90.6107.8 91.1117.8 91.5 276.0127.8 92.2137.8 92.6149.8 93.5161.8 94.0176.8 94.5196.5 95.9 276.0208.6100.0 30.25 30.25 30.25 0.00 30.50 0.00 NS 276.0 30.25 30.25 30.25 30.25 30.25 30.25 276.0 NS 32.50 32.25 30.25 30.25 30.25 30.25 276.0 NS 32.50 0.00 32.50 32.50 32.50 32.50 NS 276.0 276.0 0.00 NS 94.70 94.47 94.59 94.07 94.21 94.35 276.0 WSL 95.29 95.21 94.91 95.02 95.11 94.81 WSL 276.0 95.72 95.79 95.63 95.47 95.55 95.38 276.0 WSL 96.02 96.69 96.98 96.36 95.87 95.94 276.0 WSL WSL 276.0 97.52 2350.00 95.90 CAL1 276.0 1.00 1.90 2.30 2.40 2.70 2.80 2.80 2.50 2.80 2.50 VEL1 276.0 VEL1 276.0 2.60 2.70 2.70 2.60 2.50 2.80 2.70 2.40 2.60 2.20 1.80 VEL1 276.0 95.77 2200.00 CAL2 276.0 VEL2 276.0 VEL2 276.0 VEL2 276.0 CAL3 276.0 95.34 1720.00 VEL3 276.0 VEL3 276.0 VEL3 276.0 .00034 505.0 .50 90.70 XSEC 781.0 7.1 96.0 15.5 91.6 21.0 91.5 28.0 92.1 35.0 92.5 781.0 0.0103.1 781.042.0 92.5 49.0 92.6 59.0 92.6 69.0 92.5 79.0 92.5 86.0 92.3 781.0 92.0 92.2100.0 92.1107.0 92.1117.0 91.9124.0 91.9131.0 91.7 781.0138.0 91.6145.0 91.5152.0
91.5159.0 91.4166.0 91.3173.0 91.3 781.0180.0 91.5190.0 92.2200.0 93.1208.0 93.8221.0 96.0237.0101.2 32.25 32.25 32.25 32.25 781.0 NS 32.25 32.25 32.25 32.25 32.25 32.25 781.0 NS 32.25 781.0 32.25 32.25 32.25 32.25 32.25 NS 32.25 32.25 32.25 32.25 32.25 32.25 NS 781.0 32.25 32,25 32.25 32.25 781.0 NS 94.95 781.0 94.48 94.58 94.67 94.77 94.86 WSL 95.45 95.38 95.04 95.12 95.21 95.29 WSL 781.0 95.83 95.90 95.53 95.61 95.68 95.76 781.0 WSL 781.0 95.98 96.05 96.11 96.44 96.75 97.04 WSL 97.57 WSL 781.0 96.00 CAL1 781.0 2350.00 VEL1 781.0 1.00 2.30 2.00 2.80 2.70 2.80 3.10 2.80 3.20 3.20 VEL1 781.0 3.20 3.10 3.20 3.20 3.30 3.20 3.20 3.20 3.30 3.40 3.10 3.00 VEL1 781.0 3.00 2.90 4.90 2.20 CAL2 781.0 95.90 2200.00 VEL2 781.0 VEL2 781.0 VEL2 781.0 CAL3 781.0 95.59 1720.00 VEL3 781.0 VEL3 781.0 VEL3 781.0 ENDJ ``` ``` 00001001000010010000 IOC -0.8 NSLP QARD 1000 QARD 1100 OARD 1200 OARD 1300 OARD 1400 QARD 1500 OARD 1600 OARD 1700 OARD 1800 QARD 1900 OARD 2000 2100 QARD OARD 2200 OARD 2300 QARD 2400 QARD 2500 QARD 3000 OARD 3500 OARD 4000 QARD 5000 0.0 0.0 .50 89.80 .00030 0.0 0.099.45 5.097.15 15.0 93.2 28.0 95.5 38.0 93.8 43.0 93.3 0.0 48.0 93.1 58.0 93.0 68.0 92.9 78.0 92.7 88.0 92.5 98.0 92.3 89.80 .00030 XSEC 0.0108.0 91.9113.0 91.8118.0 91.6123.0 91.4128.0 91.3133.0 91.1 0.0138.0 91.0143.0 90.8148.0 90.5153.0 90.5158.0 90.4163.0 90.7 0.0168.0 90.7173.0 90.6178.0 90.4183.0 90.2188.0 89.9193.0 89.9 0.0198.0 89.8203.0 90.1208.0 91.0217.097.15220.099.45 10.00 10.00 NS 0.0 10.00 10.00 20.00 20.00 30.00 30.00 30.00 30.00 NS 0.0 20.00 20.00 20.00 20.00 30.00 30.00 NS 0.0 20.00 20.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 NS 0.0 NS 0.0 30.00 30.00 30.00 0.0 30.00 NS 94.89 95.75 96.33 96.41 96.85 94.69 WSL 0.0 95.23 95.37 95.51 95.96 96.06 96.15 96.49 96.57 96.64 WSL 0.0 95.63 WSL 0.0 96.24 WSL 0.0 96.71 96.78 96.85 97.17 97.45 97.70 WSL 0.0 98.13 CAL1 0.0 97.15 2970.00 1.50 .90 1.70 2.10 2.00 2.30 2.30 2.70 2.70 3.30 VEL. 0.0 0.0 3.10 3.30 3.20 3.40 3.40 3.50 3.40 3.40 3.40 3.50 3.40 3.40 VEL1 0.0 3.60 3.60 3.80 3.30 3.20 3.10 2.60 2.10 .90 VEL1 CAL2 96.05 0.0 1430.00 VEL2 0.0 VEL2 0.0 VEL2 0.0 CAL3 0.0 96.60 2220.00 VEL3 0.0 VEL3 0.0 VEL3 0.0 XSEC 340.0 340.0 .50 89.80 .00030 340.0 0.0101.7 6.897.35 18.5 94.2 29.2 93.7 38.0 94.0 48.0 94.2 340.0 58.0 94.0 68.0 93.8 78.0 93.6 88.0 93.4 98.0 93.1108.0 92.9 340.0118.0 92.6128.0 92.3138.0 92.0148.0 91.3153.0 91.2158.0 91.2 340.0165.0 90.8172.0 90.5180.0 90.5190.0 90.2195.0 90.0200.0 89.7 340.0205.0 89.9210.0 90.3215.0 90.6228.997.35236.9100.9 340.0 0.00 0.00 10.00 10.00 10.00 NS 20.00 NS 340.0 20.00 20.00 20.00 20.00 ``` ``` Table A-2 (Cont'd) 30.00 30.00 30.00 20.00 20.00 20.00 340.0 NS 30.00 30.00 30.00 30.00 30.00 340.0 30.00 NS 30.00 30.00 30.00 NS 340.0 95.56 95.70 95.42 95.26 94.88 95.08 WSL 340.0 96.15 96.25 96.34 95.94 96.05 340.0 95.82 WSL 96.83 96.76 96.68 96.60 WSL 340.0 96.43 96.52 97.90 97.36 97.64 97.04 96.90 96.97 340.0 WSL 98.33 WSL 340.0 2970.00 CAL1 340.0 97.35 1.20 1.50 1.90 2.50 2.80 2.70 3.00 3.30 3.20 3.20 VEL1 340.0 VEL1 340.0 3.50 3.60 3.70 3.50 3.60 3.40 3.40 2.50 2.20 2.50 2.00 1.60 VEL1 340.0 1.90 1.50 1.00 96.19 1430.00 CAL2 340.0 VEL2 340.0 VEL2 340.0 VEL2 340.0 96.75 2220.00 CAL3 340.0 VEL3 340.0 VEL3 340.0 VEL3 340.0 .00030 806.0 466.0 .50 89.80 .00030 806.0 0.099.77 5.097.37 15.0 94.7 22.0 94.4 33.0 94.2 42.0 94.0 XSEC 806.0 806.0 52.0 93.7 62.0 93.3 72.0 92.8 82.0 92.3 92.0 91.9102.0 91.4 806.0112.0 90.7122.0 90.0129.0 89.7136.0 89.1143.0 89.1150.0 89.1 806.0156.0 89.1160.0 89.1166.0 89.3173.0 89.2180.0 88.9186.0 88.9 806.0191.0 89.2196.0 91.1203.297.37207.0101.1 10.00 10.00 10.00 10.00 NS 806.0 20.00 20.00 20.00 20.00 20.00 20.00 NS 806.0 30.00 30.00 20.00 30.00 30.00 20.00 806.0 NS 30.00 30.00 30.00 30.00 30.00 30.00 806.0 NS 30.00 30.00 NS 806.0 95.71 95.09 95.27 95.43 95.57 806.0 94.89 WSL 96.36 96.27 96.17 95.83 95.95 96.07 WSL 806.0 96.85 96.70 96.78 96.62 96.45 96.54 WSL 806.0 97.67 97.92 97.38 96.99 97.06 96.92 806.0 WSL 98.35 806.0 WSL 2970.00 CAL1 806.0 97.37 1.10 1.30 1.60 2.00 3.00 2.50 2.60 2.70 2.90 3.00 VEL1 806.0 VEL1 806.0 3.10 2.90 3.00 3.10 3.10 3.10 3.00 2.80 2.80 2.60 2.50 2.10 VEL1 806.0 2.00 1.20 96.30 1430.00 CAL2 806.0 VEL2 806.0 VEL2 806.0 VEL2 806.0 96.84 2220.00 CAL3 806.0 VEL3 806.0 VEL3 806.0 VEL3 806.0 ENDJ ``` ``` 00001001000010000000 TOC QARD 1000 OARD 1100 OARD 1200 1300 OARD OARD 1400 1500 OARD QARD 1600 OARD 1700 OARD 1800 1900 OARD 2000 OARD OARD 2100 2200 OARD OARD 2300 2400 OARD 2500 OARD OARD 3000 OARD 3500 QARD 4000 QARD 5000 0.0 0.0 .50 87.10 .00011 XSEC 0.0 0.099.26 7.092.19 12.0 90.0 17.0 88.6 23.6 88.9 30.6 88.5 0.0 35.6 87.8 40.6 87.5 45.6 87.2 50.6 87.2 55.6 87.2 60.6 87.2 0.0 65.6 87.1 70.6 87.1 75.6 87.1 80.6 87.1 87.6 87.1 94.6 87.2 0.0101.6 87.3108.6 87.4115.6 87.5122.6 87.7129.6 87.8136.6 88.0 0.0143.6 88.2150.6 88.4160.6 88.8170.6 89.3180.6 90.0190.6 90.6 0.0200.6 91.0211.292.19231.699.66 NS NS 0.00.000 20.70.000 20.70.000 20.70.000 20.70.000 20.70.000 20.7 NS 0.00.000 20.70.000 30.50.000 30.50.000 30.50.000 30.50.000 30.5 NS 0.00.000 32.50.000 32.50.000 32.50.000 32.50.000 32.50.000 32.5 MS 0.00.020 32.70.020 0.00.020 0.0 0.0 89.91 90.15 90.37 0.0 91.13 91.29 91.45 90.15 90.37 90.58 90.77 90.95 91.29 91.45 91.60 91.74 91.88 92.15 92.28 92.40 92.52 92.64 92.87 92.98 93.50 94.00 94.45 WSL 91.13 WSL 0.0 92.02 0.0 92.76 WSL 93.50 WSL 0.0 95.28 WSL 0.0 1830.00 CAL1 92.19 VEL1 0.0 .40 .60 1.00 1.20 1.50 1.80 1.90 2.00 2.00 2.20 0.0 2.40 2.20 2.50 2.60 2.60 2.80 2.90 2.80 3.10 3.10 3.10 3.10 VEL1 0.0 3.20 3.20 3.00 2.70 2.10 1.60 1.20 91.91 1620.00 CAL2 0.0 VEL2 0.0 0.0 VEL2 VEL2 0.0 92.11 1770.00 CAL3 0.0 VEL3 0.0 VEL3 0.0 VEL3 0.0 160.0 .50 87.10 .00011 XSEC 160.0 160.0 0.0101.2 25.092.21 32.0 90.2 39.0 90.0 49.0 90.1 59.0 90.0 160.0 69.0 90.0 79.0 89.8 86.0 89.5 93.0 89.1100.0 88.6107.0 88.3 160.0114.0 88.1121.0 87.9128.0 87.7135.0 87.5140.0 87.3145.0 87.1 160.0150.0 87.0155.0 86.9160.0 86.8165.0 86.8170.0 86.7175.0 86.7 160.0180.0 86.6185.0 86.7190.0 86.8195.0 87.0200.0 87.3205.0 87.7 160.0212.0 88.0217.0 88.8226.192.21235.099.96 160.00.030 0.00.030 0.00.030 10.00.030 30.75.030 30.75.000 23.7 160.00.000 20.50.000 20.50.000 20.50.000 20.50.000 32.20.000 32.2 NS ``` ``` Table A-3 (Cont'd) 160.00.000 32.20.000 32.20.000 32.20.000 32.20.000 32.20.000 32.2 160.00.000 32.20.000 32.20.000 32.20.000 32.20.000 32.20.000 32.2 MS 160.00.000 32.20.000 32.20.000 32.20.000 32.20.000 32.20.030 32.2 NS NS 160.00.030 30.50.030 30.70.030 0.00.030 0.0 NS 91.08 90.94 90.81 90.68 90.56 90.47 160.0 91.92 WSL 91.78 91.65 91.51 91.37 91.23 WSL 160.0 92.65 92.53 92.30 92.42 92.17 92.05 160.0 WSL 94.45 94.00 93.50 92.88 92.99 92.77 160.0 WSL 95.28 160.0 WSL 1830.00 .60 1.00 1.30 1.80 2.00 2.00 2.20 2.50 CAL1 160.0 92.21 0.00 .20 VEL1 160.0 2.60 2.40 2.50 2.50 2.60 2.70 2.70 3.00 2.80 2.90 2.80 2.90 VEL1 160.0 2.80 2.80 3.20 2.80 2.40 2.40 1.20 .30 1620.00 CAL2 160.0 91.94 VEL 2 160.0 VF 160.0 V 160.0 1770.00 92.14 C. 160.0 VEL3 160.0 VEL3 160.0 VEL3 160.0 .00011 87.10 0.098.26 24.092.23 39.0 91.7 54.0 91.4 69.0 91.0 79.0 90.5 218.0 .50 XSEC 378.0 378.0 89.0 89.9 99.0 89.6109.0 89.4119.0 89.1126.0 88.8133.0 88.6 378.0140.0 88.3147.0 88.0154.0 87.7161.0 87.3168.0 87.0175.0 86.8 378.0182.0 86.4187.0 86.3192.0 86.2197.0 86.2202.0 86.3207.0 86.6 378.0212.0 86.8219.0 87.6225.092.23238.0100.1 378.00.020 0.00.020 0.00.020 23.50.020 23.50.020 23.50.000 23.5 378.00.000 23.50.000 23.50.000 23.50.000 23.50.000 23.50.000 23.5 378.00.000 23.50.000 23.50.000 23.50.000 23.50.000 23.50.000 23.5 378.00.000 30.20.000 30.20.000 30.20.000 30.20.000 30.20.020 23.5 NS NS 378.00.020 20.70.020 10.00.020 0.00.020 0.0 NS 91.24 91.00 91.15 91.07 90.97 90.98 378.0 WSL 91.95 91.83 91.71 91.59 91.47 91.36 378.0 92.65 WSL 92.54 92.42 92.31 92.19 92.08 378.0 WSL 94.45 94.00 93.50 92.99 92.88 92.77 WSL 378.0 95.28 378.0 WSL 1830.00 92.23 .20 .90 2.00 2.30 2.30 2.70 2.90 2.90 2.80 2.90 CAL1 378.0 VEL1 378.0 2.90 3.00 3.20 3.00 3.20 3.20 3.10 2.90 3.10 3.00 3.00 2.60 VEL1 378.0 1.80 .30 1620.00 91.99 CAL2 378.0 VEL2 378.0 VEL2 378.0 ``` VEL2 378.0 CALJ 378.0 VELJ 378.0 VELJ 378.0 VELJ 378.0 ENDJ 92.16 1770.00 ``` TOC 10001001000010010000000 NSLP -1.4 OARD 1000 QARD 1100 QARD 1200 1300 OARD OARD 1400 1500 OARD 1600 OARD 1700 OARD QARD 1800 OARD 1900 QARD 2000 OARD 2100 QARD 2200 2300 QARD 2400 OARD OARD 2500 3000 OARD QARD 3500 XSEC 0.0 0.0 .50 84.80 .00030 0.0 0.0 99.7 13.093.45 23.0 92.6 35.0 91.4 45.0 90.4 55.0 89.1 0.0 65.0 87.6 73.0 86.5 81.0 85.8 89.0 85.1 95.0 85.0101.0 85.0 0.0107.0 84.8112.0 84.9118.0 85.1124.0 85.2130.0 86.1136.0 86.7 0.0144.0 87.9151.0 88.8159.0 91,0168.093.45174.0 99.6 30.75 30.75 0.0 30.50 30.50 NS 30.00 30.00 30.75 NS 0.0 30.25 30.00 30.00 30.00 30.00 30.50 0.0 30.50 NS 30.00 30.00 30.00 30.50 30.75 NS 0.0 92.28 0.0 91.90 92.10 92.43 92.57 WSL 92.81 92.92 93.02 93.12 93.20 93.28 WSL 0.0 93.53 93.45 93.79 93.36 93.60 93.66 93.73 WSL 0.0 WSL 0.0 93.85 93.90 94.16 94.38 0.0 94.91 WSL 93.45 1800.00 CALI .10 .30 1.00 1.60 2.30 2.50 2.80 2.90 2.90 2.90 VEL1 0.0 0.0 2.80 2.40 2.20 2.30 2.40 2.00 1.50 1.30 1.10 VEL1 1160.00 CAL2 92.84 0.0 VEL2 0.0 VEL2 0.0 CAL3 0.0 93.26 1510.00 VEL3 0.0 VEL3 0.0 88.0 .50 84.80 .00030 XSEC 88.0 88.0 0.0 98.2 1.0 93.5 7.0 89.1 17.0 89.1 27.0 88.9 37.0 88.1 88.0 45.0 87.3 53.0 87.2 59.0 87.3 65.0 87.3 71.0 86.9 77.0 86.5 88.0 83.0 86.1 89.0 85.8 95.0 85.4101.0 84.6107.0 85.5113.0 85.5 88.0119.0 86.5127.0 86.8135.0 86.8145.0 87.9157.0 88.6163.0 90.5 88.0175.0 93.5177.0100.5 88.0 30.75 30.50 32.50 88.0 32.50 32.50 88.0 32.50 32.50 88.0 32.50 10.00 NS 32.50 32.50 32.50 32.50 32.50 32.50 NS 32.50 32.50 32.50 NS 10.00 30.75 10.00 10.00 NS 88.0 WSL 88.0 91.91 92.11 92.30 92.45 92.59 92.72 93.05 88.0 92.84 92.95 93.15 93.24 93.32 WSL 93.58 93.79 WSL 88.0 93.40 93.50 93.65 93.72 93.92 WSL 88.0 93.85 93.97 94.25 94.49 94.70 WSL 88.0 95.09 CAL1 88.0 93.50 1800.00 ``` ``` Table A-4 (Cont'd) .10 1.30 2.30 2.80 3.10 3.30 3.50 3.40 3.10 3.60 88.0 VEL1 88.0 3.30 3.00 2.70 2.60 1.80 2.00 1.40 .80 .50 .10 0.00
0.00 VEL1 VEL1 88.0 1160.00 92.88 88.0 CAL2 88.0 VEL2 88.0 VEL2 VEL2 88.0 1510.00 93.27 CAL3 88.0 VEL3 88.0 VEL3 88.0 88.0 VEL3 220.0 132.0 .50 84.80 .00030 220.0 0.0100.3 6.093.51 15.0 89.4 25.0 89.4 29.0 89.4 33.0 89.6 XSEC 220.0 220.0 37.0 89.5 41.0 89.6 45.0 89.5 50.0 89.6 55.0 89.5 60.0 89.5 220.0 66.0 89.4 71.0 89.3 76.0 89.2 81.0 89.1 86.0 88.9 91.0 88.8 220.0 96.0 89.0101.0 88.9106.0 89.0111.0 89.0116.0 89.0121.0 89.0 220.0126.0 89.0131.0 88.6138.0 88.6155.0 91.4165.0 89.5176.0 89.5 220.0186.0 89.2196.0 90.5204.093.51211.0 98.7 32.25 32.25 32.25 32.25 32.25 32.25 10.00 32.25 220.0 NS 32.25 32.25 32.25 32.25 32.25 32.25 30.50 10.00 32.25 32.25 32.25 32.25 32.25 32.25 30.50 30.00 32.25 220.0 NS 32.25 220.0 NS 32.25 32.25 220.0 NS 10.00 220.0 32.25 220.0 10.00 10.00 NS 10.00 92.14 92.61 92.74 220.0 91.94 92.47 92.32 91.94 92.85 93.42 93.51 93.92 92.32 WSL 220.0 92.85 220.0 93.42 220.0 93.86 220.0 95.09 93.33 93.17 93.25 WSL 93.73 93.80 93.59 93.66 WSL 94.49 94.25 93.98 WSL WSL CAL1 220.0 1800.00 93.51 1.90 2.80 2.80 3.60 3.00 3.20 3.10 3.40 3.40 3.70 VEL1 220.0 VEL1 220.0 3.60 3.40 3.50 3.10 3.30 3.30 3.40 3.40 3.10 2.90 2.70 2.60 VEL1 220.0 2.20 1.20 .30 .10 .40 .40 1.00 .40 1160.00 92.89 CAL2 220.0 VEL2 220.0 VEL2 220.0 VEL2 220.0 CAL3 220.0 93.28 1510.00 VEL3 220.0 VEL3 220.0 VEL3 220.0 ENDJ ``` ``` 000010010000101000000 IOC 0.070 NMAX 1000 OARD 1100 OARD 1200 QARD 1300 QARD 1400 OARD 1500 OARD 1600 OARD 1700 QARD 1800 QARD 1900 OARD 2000 OARD OARD 2100 2200 OARD 2300 QARD 2400 QARD OARD 2500 OARD 3000 3500 OARD 0.0 .50 87.50 .00200 0.0 99.7 7.0 93.7 11.0 89.8 18.0 88.4 23.0 88.0 28.0 88.0 .00200 XSEC 0.0 0.0 0.0 33.0 87.8 38.0 87.5 43.0 87.6 48.0 87.7 53.0 88.0 58.0 88.3 0.0 63.0 88.5 70.0 89.4 80.0 90.2 90.0 90.9100.0 91.2110.0 91.6 0.0120.0 91.9130.0 92.1140.0 92.4150.0 92.6160.0 92.7170.0 93.0 0.0184.0 92.9210.0 93.7275.0100.3 23.25 23.25 10.00 0.0 NS 30.25 32.25 30.25 30.25 30.25 0.0 30.25 NS 34.25 34.25 32.25 32.25 34.25 32.25 NS 0.0 32.25 32.25 34.25 34.25 34.25 0.0 34.25 NS 0.0 32.25 NS 92.01 92.20 92.37 92.53 91.81 91.57 WSL 0.0 93.24 93.04 93.14 92.80 92.92 92.67 0.0 WSL 93.76 93.68 93.43 93.52 93.60 93.34 WSL 0.0 94.29 94.58 94.83 93.84 93.91 93.98 0.0 WSL 95.29 WSL 0.0 93.70 2120.00 0.0 CAL1 .80 2.90 2.90 3.50 4.00 3.80 4.00 4.20 4.50 4.50 VEL1 0.0 0.0 4.40 4.50 4.10 4.30 4.20 4.20 4.50 4.00 4.20 4.20 3.30 2.50 VEL1 VEL1 0.0 2.50 92.90 0.0 1210.00 CAL2 VEL2 0.0 VEL2 0.0 VEL2 0.0 93.37 1700.00 CAL3 0.0 VEL3 0.0 VEL3 0.0 VEL3 0.0 .00200 87.50 XSEC 81.0 81.0 .50 81.0 0.0100.1 13.093.95 26.0 89.8 32.0 89.6 39.0 90.1 46.0 90.2 81.0 54.0 90.4 62.0 90.6 72.0 90.9 82.0 91.0 92.0 91.0102.0 91.0 81.0112.0 90.9122.0 90.6131.0 90.6140.0 90.5149.0 90.6159.0 90.6 81.0167.0 90.7176.0 91.1186.0 91.4196.0 91.6206.0 92.2217.0 93.3 81.0235.093.95263.0100.1 30.25 30.25 30.25 81.0 10.25 NS 30.25 30.25 30.25 30.25 30.25 30.25 81.0 NS 34.25 34.25 30.25 34.25 34.25 30.25 81.0 NS 34.25 34.25 34.25 45.50 81.0 34.25 NS 81.0 NS 92.36 92.53 91.76 91.98 92.17 WSL 81.0 ``` ``` 93.35 93.11 93.24 93.45 81.0 92.85 92.98 WSL 94.01 93.84 93.92 WSL 81.0 93.56 93.66 93.75 94.58 94.89 95.17 94.24 81.0 94.09 94.17 WSL 95.67 WSL 81.0 93.95 2120.00 CAL1 81.0 1.20 2.60 3.20 3.80 3.80 3.80 3.90 3.90 4.30 4.50 81.0 VEL1 81.0 4.60 4.40 4.40 4.00 3.90 3.80 3.90 3.90 3.10 3.00 2.40 1.10 VEL1 VEL1 81.0 81.0 1210.00 CAL2 93.05 VEL2 81.0 81.0 VEL2 81.0 VEL2 1700.00 93.54 CAL3 81.0 VEL3 81.0 81.0 VEL3 VEL3 81.0 250.0 169.0 .50 87.50 .00200 250.0 0.0101.1 49.0 94.1 60.0 91.7 70.0 90.8 78.0 91.3 88.0 91.1 XSEC 250.0 250.0 98.0 90.5108.0 90.6118.0 90.4128.0 90.3138.0 89.9147.0 89.9 250.0155.0 89.6163.0 89.3170.0 89.3177.0 89.0184.0 88.9191.0 88.6 250.0198.0 88.5205.0 88.5212.0 88.5218.0 88.4224.0 88.3229.0 88.2 250.0239.0 94.1245.0100.1 10.00 20.75 32.50 NS 250.0 34.25 34.25 34.25 34.25 250.0 34.25 34.25 NS 34.25 34.25 34.25 34.25 34.25 250.0 34.25 NS 30.50 30.50 30.50 250.0 34.25 34.25 34.25 NS 250.0 NS 92.84 92.33 92.51 92.68 92.14 WSL 250.0 91.93 92.99 93.13 93.26 93.38 93.50 93.60 WSL 250.0 94.17 93.91 93.99 94.08 WSL 250.0 93.71 93.81 250.0 94.25 94.75 95.07 95.35 94.33 94.41 WSL 250.0 95.87 WSL CAL1 250.0 2120.00 94.10 1.20 1.00 2.60 2.60 2.90 2.70 3.00 3.00 3.20 3.10 VEL1 250.0 VEL1 250.0 2.90 3.00 3.30 2.90 3.10 2.80 3.00 2.60 2.10 1.50 1.00 0.50 VEL1 250.0 CAL2 250.0 93.18 1210.00 VEL2 250.0 VEL2 250.0 VEL2 250.0 CAL3 250.0 93.67 1700.00 VEL3 250.0 VEL3 250.0 VEL3 250.0 ENDJ ``` ``` 0000100100001010000000 IOC 0.08 XAMN QARD 500.0 OARD 600.0 QARD 700.0 QARD 800.0 QARD 900.0 OARD 1000 OARD 1100 QARD 1200 QARD 1300 QARD 1400 OARD 1500 OARD 1600 1700 OARD OARD 1800 1900 QARD 2000 OARD OARD 2100 2200 OARD 2300 OARD 2400 OARD QARD 2500 0.0 0.0 .50 87.50 .00300 0.0 98.1 6.0 94.2 35.0 94.2 53.0 95.5 70.7 94.2 85.0 92.7 87.50 XSEC 0.0 0.0 97.3 92.5110.0 91.8120.0 90.8128.0 90.7135.0 90.6142.0 90.1 0.0147.0 89.5151.0 88.8155.0 88.0159.0 87.6163.0 87.5168.0 87.5 0.0172.5 89.0179.0 94.2183.5 99.7 30.75 0.0 23.25 23:25 30.25 23.50 23.25 23.25 NS 0.0 30.25 30.25 30.25 30.25 30.25 0.0 30.25 NS 0.0 NS 10.00 92.98 93.19 0.0 91.33 91.98 92.40 92.72 WSL 94.09 93.55 93.70 93.84 93.97 WSL 0.0 93.38 94.67 94.41 94.59 94.32 94.51 WSL 0.0 94.21 94.96 94.75 95.03 95.09 0.0 94.82 94.90 WSL WSL 0.0 95.15 94.20 1290.00 CAL1 0.0 .10 .20 2.30 3.30 3.80 4.10 4.60 VEL1 0.0 0.0 5.10 5.10 5.30 4.90 4.80 3.40 1.50 VEL1 93.50 750.00 CAL2 0.0 VEL2 0.0 VEL2 0.0 850.00 CAL3 0.0 93.60 VEL3 0.0 0.0 VEL3 84.0 .50 87.50 .00300 XSEC 84.0 84.0 0.0 96.4132.5 94.4142.5 94.1152.5 94.0162.5 93.5172.5 92.8 84.0182.5 92.3191.5 91.8200.5 91.4204.5 91.2208.5 91.0212.5 90.8 84.0216.5 90.5220.5 90.4224.5 90.3228.5 90.3232.5 90.2236.5 89.7 84.0241.5 89.6246.5 89.3251.0 90.9257.5 94.4257.5 98.8 32.50 32.50 32.50 32.50 NS 84.0 30.00 NS 84.0 32.50 32.50 30.00 30.00 30.00 30.00 30.00 30.00 NS 84.0 30.00 30.00 30.00 84.0 30.00 30.00 20.75 NS 84.0 93.30 91.43 92.07 92.49 92.82 93.08 WSL 93.49 93.97 94.11 94.23 84.0 93.67 93.83 WSL 94.84 84.0 94.36 94.47 94.57 94.67 94.76 WSL 95.30 WSL 84.0 94.93 95.01 95.09 95.16 95.23 95.36 84.0 WSL CAL1 84.0 94.40 1290.00 .30 .90 1.40 2.50 2.70 4.70 5.30 5.50 5.50 5.80 VEL1 84.0 ``` ``` Table A-6 (Cont'd) VEL1 84.0 5.90 6.10 5.80 5.50 5.20 5.10 3.70 3.40 1.20 CAL2 84.0 93.52 750.00 VEL2 84.0 VEL2 84.0 93.61 850.00 CAL3 84.0 VEL3 84.0 84.0 VEL3 .00300 XSEC 281.0 197.0 .50 87.50 281.0 0.0 97.8 16.5 95.1 30.0 94.4 40.0 94.1 50.0 93.3 60.0 93.1 281.0 65.0 93.0 70.0 92.9 75.0 92.8 80.0 91.8 85.0 92.3 90.0 92.1 281.0 95.0 92.0100.0 91.9105.0 91.9110.0 91.7115.0 91.6120.0 91.6 281.0125.0 91.5130.0 91.8137.0 92.3145.0 93.2158.0 93.1168.0 92.8 281.0175.0 92.1182.0 92.5188.8 95.1195.5 99.6 34.25 34.25 34.25 NS 281.0 45.50 34.25 34.25 34.25 34.25 281.0 34.25 NS 34.25 34.25 34.25 281.0 34.25 281.0 34.25 NS 34.25 34.25 34.25 34.25 34.25 NS 34.25 23.25 34.25 NS 281.0 23.25 23.25 WSL 281.0 92.65 93.05 93.35 93.61 93.84 94.05 94.41 WSL 281.0 94.23 94.57 94.73 94.87 95.02 95.15 WSL 281.0 95.27 95.40 95.51 95.62 95.72 WSL 281.0 95.82 95.91 96.09 96.01 96.18 96.27 96.34 95.10 281.0 WSL CAL1 281.0 1290.00 VEL1 281.0 1.50 3.50 4.00 3.40 3.70 4.70 4.80 4.60 4.80 4.60 VEL1 281.0 4.80 4.40 4.80 5.30 5.00 5.40 5.40 5.00 4.80 3.00 2.60 1.50 VEL1 281.0 1.20 .80 CAL2 281.0 94.39 750.00 VEL2 281.0 VEL2 281.0 VEL2 281:0 CAL3 281.0 94.47 850.00 VEL3 281.0 VEL3 281.0 VEL3 281.0 ``` ENDJ ``` 1000100100001 IOC OARD 300.0 QARD 400.0 OARD 500.0 QARD 600.0 QARD 700.0 OARD 800.0 OARD 900.0 .00600 0.0 .50 96.20 .00600 0.099.74 .497.98 5.0 96.7 10.0 95.8 15.0 96.9 27.0 97.8 XSEC 0.0 0.0 0.0 43.097.98 46.0 97.4 56.0 97.1 66.0 97.1 76.0 96.7 86.0 96.5 0.0 96.0 96.2106.0 96.5116.0 96.8128.097.98231.0100.3 10.00 10.00 0.0 10.00 10.00 NS 64.10 64.10 10.00 23.10 64.10 64.10 NS 0.0 64.10 64.10 64.10 0.0 NS 97.30 97.60 97.83 97.98 98.05 98.20 0.0 WSL 98.34 98.47 98.59 98.70 98.80 0.0 WSL CAL1 0.0 97.98 360.00 0.00 0.00 0.00 0.00 0.00 3.20 3.10 4.10 4.40 4.40 VEL1 0.0 0.0 4.10 4.20 3.20 VEL1 54.0 .50 .00600 96.20 XSEC 54.0 3.598.57 5.5 98.1 7.598.57 25.098.95 55.098.57 54.0 0.099.96 54.0 65.0 98.2 75.0 98.1 83.0 96.0 91.0 95.5 99.0 95.3107.0 95.4 54.0115.0 95.2123.0 96.4128.098.57228.099.96 54.00.070 0.070 0.07020.000.06030.000.06030.00 30.00 NS 30.00 64.00 64.10 64.10 64.10 64.10 NS 54.0 54.00.06064.100.06064.100.070 0.070 NS 54.0 96.93 97.57 98.15 98.57 99.06 99.28 WSL 99.62 99.77 99.46 100.01 WSL 54.0 99.90 98.57 360.00 54.0 CAL1 VEL1 54.0 0.00 1.00 1.30 1.90 2.00 2.60 2.50 54.0 2.50 1.50 VEL1 96.20 .00600 XSEC 120.0 66.0 .50 120.0 0.099.71 52.598.66 63.0 98.2 73.0 97.3 83.0 96.9 93.0 96.9 120.0103.0 95.4113.0 95.4123.0 95.4133.0 95.3143.0 96.7150.099.71 10.10 60.80 43.50 NS 120.0 120.0 54.10 54.10 54.10 54.10 54.10 NS 98.88 99.30 97.89 98.39 98.66 97.26 WSL 120.0 99.84 100.02 100.20 100.36 120.0 99.62 WSL CAL1 120.0 98.66 360.00 .10 .50 .80 2.00 2.00 2.20 2.40 2.50 1.50 VEL1 120.0 ENDJ ``` ``` IOC 100010010000101000 NMAX 0.070 OARD 300.0 QART 400.0 QAR: 500.0 QARD 600.0 OARD 700.0 OARD 800.0 OARD 900.0 0.0 0.0 .50 96.30 .00370 0.0 1.0101.6 4.798.58 13.0 96.6 21.0 96.3 29.0 96.5 37.0 96.5 XSEC 0.0 45.0 97.4 53.0 98.2 61.098.58 75.0 99.3 93.098.58102.097.22 0.0105.098,58107.0101.7 53.10 53.10 53.10 10.00 10.00 53.10 NS 0.0 10.00 43.10 43.10 43.10 43.10 43.10 0.0 NS 10.00 10.00 NS 0.0 98.79 99.04 98.49 98.58 0.0 97.63 98.12 WSL 99.39 99.51 99.63 99.74 99.24 WSL 0.0 0.0 98.58 330.00 CAL1 2.20 5.00 5.40 4.70 2.90 1.80 0.0 VEL1 VEL1 0.0 72.0 72.0 .50 96.30 .00370 72.0 0.0101.5 5.098.91 8.0 96.0 13.0 95.5 21.0 96.1 29.0 96.3 XSEC 72.0 22.0 37.0 96.9 45.0 97.7 53.0 98.2 60.098.91 92.0100.5113.099.29 72.0120.0 97.0128.0101.4 53.10 10.00 53.10 53.10 53.10 72.0 10.00 NS 43.10 43.10 43.10 43.10 72.0 53.10 43.10 NS 10.00 NS 72.0 10.00 98.34 99.19 99.57 97.66 98.79 98.91 72.0 WSL 72.0 99.88 72.0 98.91 99.88 100.13 100.35 100.53 100.67 WSL 330.00 CAL1 2.30 4.20 3.40 3.10 2.40 1.90 1.20 72.0 VEL1 72.0 VEL1 96.30 .00370 XSEC 273.0 201.0 .50 273.0 12.0100.6 12.0 99.6 15.099.75 20.0 97.2 28.0 97.5 36.0 98.1 273.0 44.0
98.3 52.0 98.8 62.0 98.9 72.0 98.9 82.0 99.1 91.0 99.6 273.0106.5100.7115.0 99.6117.0 99.4120.0 98.1120.0102.7 54.10 50.00 54.10 50.00 0 . . . 0 54.10 54.10 54.10 54.10 54.10 54.10 I. 54.10 10.00 10.00 0 54.10 N: 99.54 99.30 99.60 99.75 99.91 WSL 273.0 98.93 WSL 273.0 CAL1 273.0 100.06 100.20 100.33 100.45 100.56 330.00 99.60 4.80 5.60 3.40 4.10 3.80 3.20 3.70 2.10 1.70 VEL1 273.0 VEL1 273.0 ENDJ ``` ## Appendix B Table B-1. Velocity Adjustment Factors for the Unalakleet River, Segement 1. | | | SITE 1001 | | | | SITE 1002 | | | SITE 1003 | | |---|------------|------------------|-------|-----|------------|------------------|----------------|------------|------------------|-------| | X | SEC | DISCHRG
(cfs) | VAF | | XSEC | DISCHRG
(cfs) | VAF | XSEC | DISCHRG
(cfs) | VAF | | | 0 | 1000 | 0.987 | | 0 | 1000 | 0.784 | 0 | 1000 | 0.985 | | | 0 | 1100 | 0.991 | | 0 | 1100 | 0.804 | 0 | 1100 | 0.984 | | | 0 | 1200 | 0.997 | | Ö | 1200 | 0.818 | 0 | 1200 | 0.988 | | | 0 | 1300 | 0.999 | | 0 | 1300 | 0.833 | 0 | 1300 | 0.989 | | | 0 | 1400 | 1.002 | | 0 | 1400 | 0.849 | 0: | 1400 | 0.991 | | | 0 | 1500 | 1.003 | | 0 | 1500 | 0.861 | 0 | 1500 | 0.996 | | | 0 | 1600 | 1.006 | | 0 | 1600 | 0.876 | 0 | 1600 | 0.998 | | | 0 | 1700 | 1.006 | | 0 | 1700 | 0.887 | 0 | 1700 | 0.998 | | | 0 | 1800 | 1.006 | | 0 | 1800 | 0.897 | 0 | 1800 | 1.001 | | | 0 | 1900 | 1.007 | | 0 | 1900 | 0.909 | . 0 | 1900 | 1.002 | | | 0 | 2000 | 1.007 | | 0 | 2000 | 0.919 | 0 | 2000 | 1.005 | | | 0 | 2100 | 1.006 | | 0 | 2100 | 0.927 | . 0 | 2100 | 1.008 | | | 0 | 2200 | 1.007 | | 0 | 2200 | 0.939 | 0 | 2200 | 1.009 | | | 0 | 2300 | 1.004 | | 0 | 2300 | 0.949 | 0 | 2300 | 1.009 | | | 0 | 2400 | 1.003 | | 0 | 2400 | 0.957 | 0 | 2400 | 1.012 | | | 0 | 2500 | 1.002 | | 0 | 2500
3000 | 0.965 | 0 | 2500
3000 | 1.014 | | | 0 | 3000
3500 | 0.983 | | 0 | 3500 | 1.000 | 0 | 3500 | 1.025 | | | 0 | 4000 | 0.972 | | 0 | 4000 | 1.062 | 0 | 4000 | 1.032 | | | 0 | 5000 | 0.948 | | 0 | 5000 | 1.119 | 0 | 5000 | 1.044 | | | 276 | 1000 | 0.809 | | 340 | 1000 | 0.955 | 160 | 1000 | 0.986 | | | 276 | 1100 | 0.845 | | 340 | 1100 | 0.969 | 160 | 1100 | 1.009 | | | 276 | 1200 | 0.880 | | 340 | 1200 | 0.978 | 160 | 1200 | 1.031 | | | 276 | 1300 | 0.907 | | 340 | 1300 | 0.987 | 160 | 1300 | 1.048 | | | 276 | 1400 | 0.938 | 10. | 340 | 1400 | 0.998 | 160 | 1400 | 1.062 | | | 276 | 1500 | 0.961 | | 340 | 1500 | 1.006 | 160 | 1500 | 1.077 | | | 276 | 1600 | 0.989 | | 340 | 1600 | 1.016 | 160 | 1600 | 1.085 | | | 276 | 1700 | 1.011 | | 340 | 1700 | 1.024 | 160 | 1700 | 1.094 | | | 276 | 1800 | 1.030 | | 340 | 1800 | 1.029 | 160 | 1800 | 1.106 | | | 276 | 1900 | 1.050 | | 340 | 1900 | 1.037 | 160 | 1900 | 1.111 | | | 276 | 2000 | 1.069 | | 340 | 2000 | 1.043 | 160 | 2000 | 1.118 | | | 276 | 2100 | 1.081 | | 340 | 2100 | 1.048 | 160 | 2100 | 1.128 | | | 276 | 2200 | 1.100 | | 340 | 2200 | 1.057 | 160 | 2200 | 1.132 | | | 276 | 2300 | 1.113 | | 340 | 2300 | 1.064 | 160 | 2300 | 1.136 | | | 276 | 2400 | 1.129 | | 340 | 2400 | 1.069 | 160 | 2400 | 1.142 | | | 276 | 2500 | 1.138 | | 340 | 2500 | 1.073 | 160 | 2500 | 1.147 | | | 276 | 3000 | 1.193 | | 340 | 3000 | 1.094 | 160 | 3000 | 1.172 | | | 276 | 3500 | 1.228 | | 340 | 3500 | 1.115 | 160 | 3500 | 1.184 | | | 276 | 4000 | 1.263 | | 340 | 4000 | 1.130 | 160 | 4000
5000 | 1.200 | | | 276 | 5000 | 1.311 | Š. | 340 | 5000 | 1.171 | 160 | 5000 | | | | 781
781 | 1000
1100 | 0.803 | | 806
806 | 1000 | 0.713
0.739 | 378
378 | 1000
1100 | 0.892 | | | 781 | 1200 | 0.860 | | 806 | 1200 | 0.761 | 378 | 1200 | 0.956 | | | 781 | 1300 | 0.879 | | 806 | 1300 | 0.779 | 378 | 1300 | 0.978 | | | 781 | 1400 | 0.900 | | 806 | 1400 | 0.800 | 378 | 1400 | 0.996 | | | 781 | 1500 | 0.913 | | 806 | 1500 | 0.819 | 378 | 1500 | 1.011 | | | 781 | 1600 | 0.934 | | 806 | 1600 | 0.838 | 378 | 1600 | 1.022 | | | 781 | 1700 | 0.947 | | 806 | 1700 | 0.855 | 378 | 1700 | 1.026 | | | 781 | 1800 | 0.958 | | 806 | 1800 | 0.870 | 378 | 1800 | 1.037 | | | 781 | 1900 | 0.972 | | 806 | 1900 | 0.887 | 378 | 1900 | 1.040 | | | 781 | 2000 | 0.979 | | 806 | 2000 | 0.901. | 378 | 2000 | 1.046 | | | 781 | 2100 | 0.990 | | 806 | 2100 | 0.914 | 378 | 2100 | 1.046 | | | 781 | 2200 | 0.999 | | 806 | 2200 | 0.930 | 378 | 2200 | 1.049 | | | 781 | 2300 | 1.002 | | 806 | 2300 | 0.944 | 378 | 2300 | 1.047 | | | 781 | 2400 | 1.009 | | 806 | 2400 | 0.956 | 378 | 2400 | 1.048 | | | 781 | 2500 | 1.020 | | 806 | 2500 | 0.968 | 378 | 2500 | 1.048 | | | 781 | 3000 | 1.043 | | 806 | 3000 | 1.020 | 378 | 3000 | 1.051 | | | 781 | 3500 | 1.058 | | 806 | 3500 | 1.063 | 378 | 3500 | 1.044 | | | 781 | 4000 | 1.070 | | 806 | 4000 | 1.105 | 378 | 4000 | 1.044 | | | 781 | 5000 | 1.087 | | 806 | 5000 | 1.183 | 378 | 5000 | 1.043 | Table B-2. Velocity Adjustment Factors for the Unalakleet River, Segments 2 and 3 | | SITE 2001 | | | SI | TE 2002 | | | | | SIT | E 3001 | | | |----------|--------------|----------------|------------|-----|--------------|-----|-------|------|------|-----|--------------|---|-------| | XSEC | DISCHRG | VAF | XSEC | | DISCHRG | | VAF | 6 | XSEC | t | DISCHR | G | VAF | | | (cfs) | | | | (cfs) | | | | | | (cfs) | | | | 0 | 1000 | 0.794 | 0 | | 1000 | | 0.909 | | 0 | | 500 | | 0.823 | | 0 | 1100 | 0.828 | 0 | | 1100 | | 0.923 | | 0 | | 600 | | 0.875 | | 0 | 1200 | 0.857 | 0 | | 1200 | | 0.935 | | 0 | | 700 | | 0.916 | | 0 | 1300 | 0.886 | 0 | | 1300 | | 0.946 | | . 0 | | 800 | | 0.951 | | 0 | 1400 | 0.911 | 0 | | 1400 | | 0.951 | | 0 | | 900 | | 0.980 | | 0 | 1500 | 0.940 | 0 | | 1500 | | 0.962 | | 0 | | 1000 | | 1.004 | | 0 | 1600 | 0.967 | 0 | | 1600 | | 0.969 | | 0 | | 1100 | | 1.024 | | 0 | 1700 | 0.991 | 0 | | 1700 | | 0.972 | | 0 | | 1200 | | 1.040 | | 0 | 1800 | 1.007 | 0 | | 1800 | | 0.978 | | 0 | | 1300 | | 1.050 | | 0 | 1900 | 1.026 | 0 | | 1900 | | 0.982 | | 0 | | 1400 | | 1.056 | | 0 | 2000 | 1.047 | 0 | | 2000 | | 0.988 | | 0 | | 1500 | | 1.064 | | 0 | 2100 | 1.071 | 0 | | 2100 | | 0.993 | | 0 | | 1600 | | 1.065 | | 0 | 2200 | 1.088 | 0 | | 2200 | | 0.995 | | 0 | | 1700
1800 | | 1.068 | | 0 | 2300 | 1.108 | 0 | | 2300 | | 0.995 | | 0 | | 1900 | 6 | 1.066 | | 0 | 2400 | 1.126 | 0 | | 2400
2500 | | 1.000 | | 0 | | 2000 | | 1.064 | | 0 | 2500
3000 | 1.148
1.233 | 0 | | 3000 | | 1.003 | | 0 | | 2100 | | 1.058 | | 0 | 3500 | | 0 | | 3500 | | 1.039 | | 0 | | 2200 | | 1.055 | | 0 | 3500 | 1.313 | U | | 3300 | | 1.035 | 01.0 | 0 | | 2300 | | 1.048 | | 88 | 1000 | 0.729 | 81 | | 1000 | | 1.041 | | 0 | | 2400 | | 1.042 | | | 1100 | 0.754 | 81 | | 1100 | | 1.012 | | 0 | | 2500 | | 1.035 | | 88 | 1200 | 0.777 | 81 | | 1200 | | 0.997 | | U | | 2300 | | 1.000 | | - 88 | | | 81 | | 1300 | | 0.982 | | 84 | | 500 | | 0.839 | | 88
88 | 1300
1400 | 0.801
0.821 | 81 | | 1400 | | 0.966 | | 84 | | 600 | | 0.864 | | 88 | 1500 | 0.842 | 81 | | 1500 | | 0.961 | | 84 | | 700 | | 0.890 | | 88 | 1600 | 0.864 | 81 | | 1600 | | 0.961 | | 84 | | 800 | | 0.909 | | 88 | 1700 | 0.884 | 81 | | 1700 | | 0.953 | | 84 | | 900 | | 0.931 | | 88 | 1800 | 0.893 | 81 | | 1800 | | 0.950 | | 84 | | 1000 | | 0.955 | | 88 | 1900 | 0.908 | 81 | | 1900 | | 0.952 | | 84 | | 1100 | | 0.972 | | 88 | 2000 | 0.926 | 81 | | 2000 | | 0.952 | | 84 | | 1200 | | 0.994 | | 88 | 2100 | 0.942 | 81 | | 2100 | | 0.956 | | 84 | | 1300 | | 1.006 | | 88 | 2200 | 0.956 | 81 | | 2200 | | 0.953 | 239 | 84 | | 1400 | | 1.023 | | 88 | 2300 | 0.973 | 81 | | 2300 | | 0.954 | | 84 | | 1500 | | 1.042 | | 88 | 2400 | 0.984 | 81 | | 2400 | | 0.955 | | 84 | | 1600 | | 1.058 | | 88 | 2500 | 1.003 | 81 | | 2500 | | 0.960 | | 84 | | 1700 | | 1.075 | | 88 | 3000 | 1.067 | 81 | | 3000 | | 0.977 | | .84 | | 1800 | | 1.096 | | 88 | 3500 | 1.127 | 81 | | 3500 | | 0.992 | | 84 | | 1900 | | 1.109 | | | | | | | | | | | 84 | | 2000 | | 1.124 | | 220 | 1000 | 1.117 | 250 | | 1000 | | 0.801 | | 84 | | 2100 | | 1.138 | | 220 | 1100 | 1.117 | 250 | | 1100 | | 0.816 | | 84 | | 2200 | | 1.155 | | 220 | 1200 | 1.110 | 250 | | 1200 | | 0.831 | | 84 | | 2300 | | 1.170 | | 220 | 1300 | 1.099 | 250 | | 1300 | | 0.846 | | 84 | | 2400 | | 1.184 | | 220 | 1400 | 1.093 | 250 | | 1400 | 10. | 0.862 | | 84 | | 2500 | | 1.202 | | 220 | 1500 | 1.100 | 250 | | 1500 | | 0.875 | | 004 | | FOO | | 0.005 | | 220 | 1600 | 1.104 | 250 | | 1600 | | 0.893 | | 281 | | 500 | | 0.925 | | 220 | 1700
1800 | 1.087 | 250
250 | | 1700
1800 | | 0.906 | | 281 | | 600
700 | | 0.886 | | 220 | 1900 | 1.084 | 250 | | 1900 | | 0.932 | | 281 | | 800 | | 0.867 | | 220 | 2000 | 1.086 | 250 | # E | 2000 | | 0.951 | | 281 | | 900 | | 0.856 | | 220 | 2100 | 1.086 | 250 | | 2100 | | 0.964 | | 281 | | 1000 | | 0.842 | | 220 | 2200 | 1.084 | 250 | | 2200 | | 0.974 | | 281 | | 1100 | | 0.837 | | 220 | 2300 | 1.088 | 250 | | 2300 | | 0.987 | | 281 | | 1200 | | 0.824 | | 220 | 2400 | 1.091 | 250 | | 2400 | | 0.999 | | 281 | | 1300 | | 0.819 | | 220 | 2500 | 1.093 | 250 | | 2500 | | 1.010 | | 281 | | 1400 | | 0.817 | | 220 | 3000 | 1.104 | 250 | | 3000 | | 1.073 | | 281 | | 1500 | | 0.809 | | 220 | 3500 | 1.114 | 250 | | 3500 | | 1.125 | | 281 | | 1600 | | 0.809 | | | | W0.000 | | | | | | | 281 | | 1700 | | 0.807 | | | | | | | | | | | 281 | | 1800 | | 0.809 | | | | | | | | | | | 281 | | 1900 | | 0.809 | | | | | | | | | | | 281 | | 2000 | | 0.813 | | | | | | | | | | | 281 | | 2100 | | 0.811 | | | | | | | | | | | 281 | | 2200 | | 0.817 | | | | | | | | | | | 281 | | 2300 | | 0.817 | | | | | | | | | | | 281 | | 2400 | | 0.817 | | | | | | | | | | | 281 | | 2500 | | 0.824 | | | | | | | | | | | | | | | | Table B-3. Velocity Adjustment Factors for the Unalakleet River, Segment 4 | SITE 4001 | | | | | SITE 4002 | | |-----------|-----|------------------|-------|------|------------------|-------| | × | SEC | DISCHRG
(cfs) | VAF | XSEC | DISCHRG
(cfs) | VAF | | | 0 | 300 | 0.719 | 0 | 300 | 0.934 | | | 0 | 400 | 0.828 | 0 | 400 | 1.017 | | | 0 | -500 | 0.953 | 0 | 500 | 1.071 | | | 0 | 600 | 1.056 | 0 | 600 | 1.130 | | | 0 | 700 | 1.140
| 0 | 700 | 1.164 | | | 0 | 800 | 1.230 | 0 | 800 | 1.206 | | | 0 | 900 | 1.171 | 0 | 900 | 1.162 | | | 54 | 300 | 1.030 | 72 | 300 | 0.962 | | | 54 | 400 | 1.243 | 72 | 400 | 1.073 | | | 54 | 500 | 1.452 | 72 | 500 | 1.152 | | | 54 | 600 | 1,607 | 72 | 600 | 1.214 | | | 54 | 700 | 1.768 | 72 | 700 | 1.258 | | | 54 | 800 | 1.902 | 72 | 800 | 1.293 | | | 54 | 900 | 2.063 | 72 | 900 | 1.321 | | | 120 | 300 | 0.863 | 273 | 300 | 1.120 | | | 120 | 400 | 1.023 | 273 | 400 | 1.172 | | | 120 | 500 | 1.173 | 273 | 500 | 1.186 | | | 120 | 600 | 1.283 | 273 | 600 | 1.219 | | | 120 | 700 | 1.368 | 273 | 700 | 1.177 | | | 120 | 800 | 1.431 | 273 | 800 | 1.141 | | | 120 | 900 | 1.477 | 273 | 900 | 1.112 | | | | | | | | |